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Syllabus

Mathematical Statistics

Objective: This course aims to teach the students about special distributions and
random Process. To prepare students for lifelong learning and successful careers using

their mathematical statistics skills.

Unit-I: Characteristic Function

Properties of characteristic functions-characteristic function and moments - semi invariants
- the characteristic functions of sum of independent random variables determination

of distribution function of the characteristic function - Probability generating function.

Unit-II: Some Probability Distributions

One-point and two-point distributions - The Bernoulli scheme: Binomial distribution
The Poisson scheme: The generalized binomial distribution - The Polya and hypergeometric

distributions - The Poisson distribution - The uniform distribution.

Unit-III: Some Probability Distributions

The normal distribution - The gamma distribution - The beta distribution - The Cauchy

and Laplace distributions - The multinomial distribution - Compound distributions.

Unit-IV: Limit Theorems

Stochastic Convergence - Bernoulli’s law of large numbers - the convergence of a
sequence of distribution functions - The Levy-Cramér theorem - The De Moivre-Laplace

theorem - The Lindeberg-Lévy theorem - The Lapunov theorem.



Unit-V: Markov Chains

Homogeneous Markov chains - The transition matrix - The Ergodic theorem - Random
variables forming a homogeneous Markov Chain. Stochastic Processes: The Wiener

Process - The Stationary Processes.
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Unit 1

Characteristic Function

Objective

This course aims to teach the students about characteristic function and moments.
Determination of distribution function of the characteristic function of probability

generating function.

1.1 Properties of Characteristic Functions

In this section we investigate the expected value of a certain function of a random
variable and obtain a method of investigation which is extremely useful in further
work on probability theory and its application to statistics. Let X be a random variable

and let F'(x) be its distribution function.

Definition 1.1.1 Characteristic Function
The function
o(t) = E (e") (1.1)

where t is a real number and i is the imaginary unit, is called the characteristic function

of the random variable X or of the distribution function F(x).

If X is a random variable of the discrete type with jump points =, (k = 1,2,...) and

P (X = z) = py, the characteristic function of X has the form
O(t) = E (") =) pre'™™ (1.2)
k
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Since |e¢"*s| =1 and >, pr = 1, the series on the right-hand side of (1.2) is absolutely
and uniformly convergent. Thus, the characteristic function ¢(¢), as the sum of a
uniformly convergent series of continuous functions, is continuous for every real value
of ¢.

Example 1.1.2 The random variable X can take on the values vy = —1 and xo = +1
with probabilities P(X = —1) = P(X = +1) = 0.5. We shall determine the characteristic
function of this random variable. By (1.2) we have,

B(t) = 0.5e~" + 0.5¢" = 0.5(cost — isint) + 0.5(cost + isint) = cost (1.3)
If X is a random variable of the continuous type with density function f(x), its characteristic

function is given by the formula

“+oo —+00 “+o00

o(t) = E (") = f(z)e™dx f(x) e | dax = f(z)dx =1 1.4

Since the integral in (1.4) is absolutely and uniformly convergent; hence ¢(t) is a continuous

function for every value of t.

Example 1.1.3 The density f(x) is defined as;

0, for x<0
fl@)=4 1, for 0<z<1 (1.5)
0, for xz>1

This distribution is called uniform or rectangular. Its characteristic function is;

+oo ) 1 ) eite 1 et — 1
o) = [ @t = [ fa)eds - [ | ] _ (1.6)
oo 0 it |, it
We now investigate some of the properties of characteristic functions. We have;
9(0)=E(°) =E(1) =1 1.7)

Since,



we have;
lo(t)] <1 (1.8)

We next have;
¢(—t) = E (e"*) = E(costX —isintX) = E(costX) — iE(sintX)

Since,
o(t) = E (e"¥) = E(costX + isintX) = E(costX) + iE(sintX)

we obtain

d(—t) = o(t) (1.9)

where ¢(t) denotes the complex number conjugate to ¢(t). Every characteristic function
must satisfy conditions (1.7), (1.8) and (1.9). These conditions are, however, not sufficient;
thus not every function ¢(t) satisfying these conditions is a characteristic function of some
random variable. He has shown that a function ¢(t) which is not identically constant and

which, in a neighborhood of zero, can be represented in the form
o(t) = 140 ()

with o > 0 cannot be a characteristic function. It follows immediately that neither the
function ¢(t) = exp (—t*) nor the function ¢(t) = 1/(1+t*) can be a characteristic
function. Further giving necessary and sufficient conditions for a function ¢(t) to be a

characteristic function.

Theorem 1.1.4 Let the function ¢(t) defined for —oo < t < 400 satisfy condition (1.7).
The function ¢(t) is the characteristic function of some distribution function if and only if

1. ¢(t) is continuous.

2. forn=1,2,3,...and every real ti, ..., t, and complex a4, ...,a, we have

D bt —t) ajag =0
Gk=1
Let us recall that a function satisfying second condition of theorem 1.1 is called
positive definite. Another necessary and sufficient condition for the function ¢(t) to be

a characteristic function.



Let Us Sum Up

Learners, in this section we have seen that definition of characteristic function and

properties of characteristic function and also given standard theorems.

Check Your Progress

1. A feedback system is stable if the number of zeros (z) of a characteristic equation
in the right half of the s- plane is:
A.Z =1

Z=0

Z =2

None of these

The function ¢(t) is:

E (eX)

()

E ()

E (e')

SOoOwWPENMUOW

1.2 Characteristic Function and Moments

Consider a random variable X and suppose that its [ th moment m; = E (X') exists.
Suppose that X is a random variable of the discrete type with jump points z;. Then
we can differentiate (1.2) [ times with respect to ¢. In fact, the [ th derivative with
respect to t of the expression under the summation sign in (1.2) equals p;liz;'e’®*. On
the other hand, from the existence of the /[ th moment there follows the existence of

the absolute [ th moment. Since
1 ; i !
> lipraie’e™ | = 3 |pin'| =
k k
we can differentiate (1.2) [ times under the summation sign. Hence we have,

Z pkllxkleztxk o ( leeitX)



Suppose now that f(x) is the density function of a random variable X of the continuous
type. Then we can differentiate (1.4) [ times. Indeed, the [ th derivative with respect

to ¢ of the expression under the integral sign in (1.4) equals i'z! f(x)ei**. We have

+o0 +o0
/ ’ilmlf(a:)em‘ dr = / |2 f(z)| dz = B

o) —

By assumption, the absolute moment f; is finite. Thus we can differentiate the formula

for ¢(t)! times under the integral sign. We obtain
+OO . .
pO(t) = / ial f(z)e™dr = B (i' X'e"™X) (1.10)
Thus we have obtained the same result as for a random variable of the discrete type
oW(t) = E (i'X'e™™) (1.11)
Let us compute ¢()(0) from relation (1.11). We have
1(0) =i'E (X') = i'my (1.12)

Hence

(1.13)
Thus we have proved the following theorem.

Theorem 1.2.1 If the lth moment m; of a random variable exists, it is expressed by
formula (1.13), where ¢(0) is the lth derivative of the characteristic function ¢(t) of

this random variable at t = 0.

Example 1.2.2 Suppose that the random variable X has a Poisson distribution, that is,
it can take on the values x; = k, where k is any non-negative integer, and the probability

function is given by the formula

)\k Y

(1.14)

where \ is a positive constant. We shall find the characteristic function of X. From (1.2)



we obtain

o0

k!

k=0

o(t) = Zeitk%e’\ = Z (Ae®) = exp(—A) exp (Ae") = exp [A (e" = 1)].

Furthermore,
¢'(t) = Niexp(it) exp [ (e" —1)]

From (1.13) we obtain

Similarly,
¢"(t) = Ni* exp(it) exp [A (¢ — 1)] [Xexp(it) + 1]

Hence

_90) _ A ()

2

= AA+1)

mo
12 1

Thus the central moment of the second order is
o = AA+1) — A2 =\

In a similar manner we can obtain the moments of higher orders.

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(4.2.9)

Example 1.2.3 We shall find the characteristic function and the moments of a normal

distribution. We have

Hence

o(t) = ¢L2_7T /_ :o exp(itz) exp (-%2) da

Since ¢/ (t) = —t exp (—1?/2), we have

my = ¢,(0> =0
i
Next, we have ¢"(t) = (1 — 1) exp (—t?/2); hence
— ¢"(0) _ 1

2'2

10

2

2

i

)

(1.20)

(1.21)

(1.22)

(1.22 a)

(1.23)



We have already obtained the same values m; and my in examples. The reader can verify
that all the odd order moments equal zero and that the even order moments are expressed
by the formula

my=1-3-5-...-(20—1) (1.24)

We notice that the converse of theorem is not true. An example of a random variable,
whose expectation does not exist and whose characteristic function is differentiable at
t = 0. But if the characteristic function ¢(t) has a finite derivative of an even order 2k at
t' = 0, then the moment of order 2k of the corresponding random variable exists. As we

know, in this case all the moments of orders smaller than 2k also exist.

Let Us Sum Up

Learners, in this section we have seen that the characteristic function and moments.

Also given theorem and examples.

Check Your Progress

1. Which of the following statements is true about the relationship between the
characteristic function and the moment generating function?

A. They are identical and can be used interchangeably.

B. The characteristic function is defined for all real t, while the M GF is defined only
for ¢ in a neighborhood around zero.

C. The MGF is defined for all real ¢, while the characteristic function is defined only
for t in a neighborhood around zero.

D. The characteristic function and the MGF are not related in any way.

2. The moments of a random variable X can be obtained from the characteristic
function ¢y (t) by:

A. Differentiating ¢x (¢) with respect to ¢ and then evaluating at ¢t = 0.

B. Integrating ¢x (¢) with respect to ¢ and then evaluating at ¢ = 0.

C. Differentiating ¢ x (¢) with respect to ¢t and then evaluating at ¢ = 1.

D. Integrating ¢x (¢) with respect to ¢ and then evaluating at ¢ = 1.

11



1.3 Semi-Invariants

Now consider the characteristic function of a linear transformation of the random

variable X. First consider the translation
Y=X+0b
Denoting by ¢, (t) the characteristic function of the random variable Y, we obtain
G1(t) = E (e") = E (")) = E (&%) e = e (t) (1.25)

We see that when the random variable is translated by a constant b, its characteristic

function is multiplied by the factor ¢**. Now let
Y =aX
We have,
61(t) = E (eiﬂ"”) = B (e"X) = ¢(at) (1.26)

Thus, the characteristic function of the random variable a X equals the characteristic

function of the random variable X at the point at. In particular, if « = —1, we obtain

Now let us consider the transformation
Y=aX+b

Denoting the characteristic functions of the random variables X and Y by ¢(¢) and

¢1(t) respectively, we obtain from equations (1.25) and (1.26)

o1 (t) = ™ o(at) (1.27)

In particular, let

12



where m; and o denote respectively the expected value and the standard deviation of

X. Then .
¢1(t) = exp (—m”t> ¢ (3) (1.28)

o o

Sometimes it is conveniel. to deal with a set of parameters other than the set of

moments. We obtain such parameters by considering the function

¥(t) = log (1) (1.29)

where ¢(t) is the characteristic function of the random variable under consideration.

Let us formally expand the function ¢(¢) in a power series in a neighborhood of ¢ = 0,
N M
o(t) =1+ Zl — (i) (1.30)

Let us denote by z the series on the right-hand side of (1.30) and let us formally

expand the function ¢ (¢) into a power series

2 3

b(t) = log ¢(t) = log(1 + 2) = % . % + % - “—j(it)s (1.31)

From (1.30) and (1.31) we obtain the formal equation

2

3
SN M "N Ks g RN B NN 1| o= Fs s
o(t) = 1—1—2?(%) — exp lzg(zt) — 1+Z§(@t) +3 Zg(zt) o Zg(zt)
s=1 : s=1 : s=1 : : s=1 : : s=1 :
(1.32)

Definition 1.3.1 The coefficients r in (1.32) are called semi-invariants. To express the
semi-invariants in terms of the moments or the moments in terms of the semi-invariants,
we compare successively the coefficients of (it)® for particular values of s in equation
(1.32). In this way we obtain

K1 = T
KJQITTLQ—TTL%:O'Q

K3 = M3 — 3myms + Qmi3 (1.32 a)

Ka = My — 3m§ —4dmims + 12m%m2 — 6m‘11

13
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and also

mi1 = K1
My = Ky + K (1.32b)
ms = k3 + 3K1K2 + H?

My = Ky + S/fg + 4dK1Kk3 + 6&%@ + /@‘11

The semi-invariants can also be expressed in terms of the central moments,

K1 = my

Ko = Jlg = 02 (1.32¢)
R3 = H3

Rqy = g — 3#;

where ¢(t) is the characteristic function of the random variable under consideration.

Let us formally expand the function ¢(¢) in a power series in a neighborhood of ¢t = 0,
B(t) =14 —(it)’ (1.33)

Let us denote by =z the series on the right-hand side of (1.3.3) and let us formally

expand the function v (¢) into a power series

2 3

W (t) = log ¢(t) = log(1 + 2) = % - % =Y By (1.34)

From (1.33) and (1.34) we obtain the formal equation

o(t) =1+ Z —'(z't)s = exp [Z —ls(zt)s (1.34 a)
s=1 s=1
9] 1 00 2 1 159 3
Ks . \s Ks . \s Ks .\
:1+;g(zt) + 5 ;g(zt) + o ;g(zt) + ...

Definition 1.3.2 The coefficients r, in (1.34) are called semi-invariants. To express the

14



semi-invariants in terms of the moments or the moments in terms of the semi-invariants,

we compare successively the coefficients of (it)* for particular values of s in equation (1.34
a). In this way we obtain

K1 = MM
112:7712—7)1%:0'2

Ks = M3 — 3mymg + 2m3 (1.34b)

Ka = My — 3m§ —4dmims + 12mfm2 — 6m‘11
and also

mi1 = K1
Mo = kg + /{% (1.34 ¢)
ms = k3 + 3K1K2 + H?

My = Ky + 3&3 + 4K1Kk3 + 6&%@ + /f‘ll

The semi-invariants can also be expressed in terms of the central moments,

K1 =my

Ko = Jlg = 02 (1.34 d)
K3 = H3

Rqy = g — 3#3

Let Us Sum Up

Learners, in this section we have seen that definitions of semi-invariants of characteristic

functions and also given theorems and applications.

15



Check Your Progress

1. A semi-invariant of a random variable X is defined as:

A. The expectation of X* for some integer k.

B. The expectation of e!* for some real number t.

C. The characteristic function E[e?X].

D. The moment generating function E[e!*].

2. The semi-invariants of a random variable X are related to:

A. The higher moments of X.

B.The Fourier transform of the probability density function of X.
C. The cumulants of X.

D. The characteristic function of X.

1.4 Characteristic Function and Independent Random

Variables

From (1.34) and (1.34 a) it follows that if the moment of the [ th order exists, all the
semi-invariants of order not greater than [ also exist. The name semi-invariants comes
from the fact that under a translation, that is, under a transformation ¥ = X + b,
all semi-invariants except x; remain unchanged. If we denote by ¢(¢) and ¢;(¢) the
characteristic functions of the random variables X and Y, respectively, we have, by
equation (1.34 b)

log ¢1(t) = bit 4 log ¢(t) (1.35)

Thus the translation changes only the coefficient of the term with it to the first power

in the expansion (1.35); hence it changes only the semiinvariant of the first order.

Example 1.4.1 We shall compute the semi-invariants of the Poisson distribution discussed.

The characteristic function of the Poisson distribution is

o(t) = exp [)\ (eit — 1)} (1.36)

16



Hence we obtain
(1) = log 4(t) = A (¢" = 1) = (Z%—1> W sy
k=0 k=

1

From formula (1.37), we obtain
k=X (k=1,2,..)) (1.38)

Using the formulas for the relations between semi-invariants and moments we can obtain
from formula (1.38) the moments of arbitrary order of the Poisson distribution. Let
X and Y be two independent random variables. From the considerations of random
itX gnd et

variables e are also independent. We shall find the characteristic function of

the sum
Z=X+Y

Let ¢(t), $1(t) and ¢2(t) denote respectively the characteristic functions of the random
variables Z, X, and Y. We have

¢(t> — E (eitZ) — E (eit(X+Y)> — E (eitXeitY) (139)
By the independence of the random variables ¢~ and ™Y
¢(t) = E (e"*) E (") = ¢1(t)pa(t) (1.40)

This result can be generalized to an arbitrary finite number of independent random

variables.

Theorem 1.4.2 The characteristic function of the sum of an arbitrary finite number of
independent random variables equals the product of their characteristic functions. Thus,

if Z is the sum of n independent random variables,

Z=X+Xo+...+X, (1.41)

and ¢(t), 1(t), pa(t), ..., dn(t) denote the characteristic functions of Z, X1, Xo, ..., X,
respectively, then

O(t) = ¢r(t)ga(t) - . du(t) (1.42)

17



Example 1.4.3 Suppose two independent random variables X, and X, have Poisson

distributions
Y Ay
P(Xlzr):—'e L P(ng?“):—'e 2(r=0,1,...) (1.43)
Tr! Tr!
Consider the random variable
7 =X1— Xy (1.44)

We shall determine the characteristic function and the semi-invariants of Z. By equation
(1.44) the characteristic functions ¢,(t) and ¢5(t) of X, and X, have the form

¢1(t) = exp [)\1 (eit — 1)} . ¢a(t) =exp [)\2 (eit — 1)} (1.45)
By (1.45), the characteristic function of — X5 is
Go(—t) = exp [)\2 (e’it — 1)] (1.46)

Since X, and — X, are independent, we obtain by (1.46) for the characteristic function of

the random variable Z

o(t) = exp [)\1 (eit — 1)} exp [)\2 (e_it — 1)] = exp (/\1€it + e =\ — )\2)

Expanding the exponents ¢t and e~* into power series, we obtain

6(1) = exp | (A1 — M) (i) + Oy + o) (”‘;)2 + (O = Ag) (ZQS,+ N
B(t) = log 6(t) = (A — M) (’1—? F (O 4 A) (Z;)Q = M) @;)3 L

From (1.46) it follows that all the semi-invariants of odd order of Z equal \; — Ay, and
all the semi-invariants of even order equal A\ + \o. The expected value and the variance
of Z can be obtained from (1.46),

mip = K1 = A1 — Mg, 0l =Ky =\ + Ao

We notice that the converse of theorem 1.1.13 is not true; that is, the characteristic

function of the sum of dependent random variables may equal the product of their characteristic

18



functions.

Example 1.4.4 The joint distribution of the random variable (X,Y) is given by the
density

Tl4ay(@®—y?)] for |z|<1 and |yl <1
flx,y) =

)

for all other points.

We first show that the random variables X and Y are dependent. The marginal distributions

in the domains |z| < 1 and |y| < 1 are, respectively, of the form

+1

f() /+11[1+ (2 2)]d 1 +132 1 1
€Tr) = — €T xr© — = - —T — =X - =
| 1 Y v)ldy =3y + 527y — J2y T3
+1q 1 1 1 L

_ N 2 ) de = = 24, 123 _
ﬁw>![14[%ﬂw@: y*)] da 4<x+4xy ') =3

We then obtain fi(z)f2(y) = + # f(x,y); hence the random variables X and Y are not
independent. We now find the density of the sum Z = X + Y. Then,

“+o0

f3(2) = [z, 2 = x)de

—00

The end points of the intervals of x values, for which f(z,z — x) > 0, depend on z. To
find them, observe that by introducing the variables x, z instead of x,y we transform the

square |z| < 1,|y| < 1 into the domain defined by the inequalities;
lz| <1, z—1<z2<z+1 (1.47)

The shaded area represents the domain in the (x, y) plane defined by the inequalities |x| <
1, |ly| < 1, and the corresponding domain in the (z,z) plane. Let us write inequalities
(1.47) in the form

lz] <1, z—1<z<2z+1

Furthermore, we notice that for z < 0 we have
z—1< -1, z2+1<1

Thus for z < 0 we integrate the function f(x,z — ) from -1 to z + 1, and for z > 0 from
z—1to 1.

19



After simple computations we obtain;

Z+11(1+3z 2 2z0% — Pa)dr=1(2+2) for —2<2<0,
fs(z) = lei(1+322x2 222 — Pr)de = 3(2—2)  for0<z<2,

0 for |z| > 2.
\
A distribution such as that of Z is called a triangular distribution. The graph of the

function f5(z) is represented in the figure. We now determine the characteristic functions
of X,Yand Z = X +Y. We have

1 +1 ] 1 eitx +1 6it - e—it sin t
t = — thd = — = =
é1(t) / © Ty { ' ] 2it /

Similarly,

Since the variable z takes on the values from the interval [—2, +2|, we find

L itz 1 [ itz 1 /92 — e2it _ g—2it
1 e* e 1 sint 2

= s \l-——F 1 — cos 2t =
27 ( 2 > gl m s = ( t >

It follows that the equality ¢5(t) = ¢1(t)p2(t) holds; nevertheless X and Y are dependent.

Let Us Sum Up

Learners, in this section we have seen that the defintions characteristic function of the

sum of independent random variables and also given theorems and applications.

Check Your Progress

1. Let X and Y be independent random variables with characteristic functions ¢x ()
and ¢y (t), respectively. The characteristic function of the sum 7 = X + Y is:

A. ox(t) - Py (t)
B. ¢x(t) + oy (t)
C. ox(t) - oy (1)
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D. ¢x(t) + ¢y (—t)

2. If X;,X,,...,X, are independent random variables with characteristic functions
¢x,(t), the characteristic function of their sum S,, = X; + Xy + -+ + X, is:

A Px,(t) - dx,(t) - ¢x, (1)

B. ¢x, (t) + ¢X2(t) + -+ qun(t)

C. ¢x, (1) - Py (t) -+ ¢x,, ()

D. ¢x,(t) - ¢x, (1) - - - P, (t)

1.5 Distribution Function and Characteristic Function

We know that uniquely determines the characteristic function of a given distribution
function. We shall prove the theorem of Lévy that the converse is also true: from the
characteristic function we can uniquely determine the distribution function. Let F(x)
and ¢(t) denote respectively the distribution function and the characteristic function
of the random variable X. If a + h and a — h(h > 0) are continuity points of the

distribution function F'(x),

1 [T sinht _,

Fla+h)— F(a—h) = lim - / SIAY o—ita s 1)t (1.48)
T—o0 T _T t

Before proving it we shall show how to apply theorem. Since the numbers a and h are

arbitrary, formula (1.48) gives the difference F'(z3) — F (z;) for arbitrary continuity

points z; and x,. By the relation
F(x9) — F(x1) =P (r1 < X < x9)

if we know the characteristic function ¢(¢), we obtain from theorem the probability
that the value of X belongs to an arbitrary. Let + = x, be a given continuity point and
let z; — —oo, where the passage to the limit is performed over the set of continuity
points. Here the sequence of differences F'(z)—F () is determined by the characteristic
function and is convergent to F'(x); thus the distribution function F'(x) is determined
at every continuity point; hence it is determined everywhere. We now give the proof
of theorem.

Proof: We give the proof only for a random variable of the continuous type with
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density function f(x). Denote

+T
J=1 / SV it g )y (1.49)

T -7 t

From the definition of the characteristic function we obtain

1 +T +o0o _: ht . .
J = —/ [/ &e_memf(x)dx] dt
™ J_p oo t
1 T +00 3 )
= —/ [/ S hte’t(z_“)f(x)dm} dt
™ J_r PN t

We notice that we can interchange the order of integration since the limits of integration
with respect to ¢ are finite and the integral is absolutely convergent with respect to .
Thus [ [snbteit@=a)| f(z)dy = [T°° S8 f(z)dx < h [T f(x)dx = h. We obtain

[ / S i f(x)dt} dx

LT ht{‘m[(m - ]+ s — @)} (o)t da
o {/ I cosfa - a)t]f(:z:)dt} dr

=1|w >1|H >1|H
\\\

By the formula
sin Acos B = %[sin(A + B) +sin(A — B)]

and the substitution A = ht, B = xt — at, we obtain

S /;w {% /OT sin[(z —ta + h)t] "

= [ sy

—0o0

where g(x,T) denotes the expression in the braces. It is known from mathematical
analysis that the integral fOT(sin z/z)dz is bounded for all T > 0 and converges to 17
as T'— +oo. It follows that the expression |g(x,T")| is bounded and

lim —
T—o0 T

1for >0
1 [Tsinat g ora
/smadt: 92

0

—5f0r04<0
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Here the convergence is uniform with respect to o where |a| = |z —a £ h| > 6 > 0.

From this fact we obtain

0 forz<a-—nh

forr =a—-nh

N | =

lim g(x,T) =91 fora—h<z<a-+h

T—00

forx =a+h

N |—

0 forz>a+h

\

It follows that in computing limy_,., J we can pass to the limit under the integral sign

on the right-hand side. Hence we obtain

+0o0
lim J :/ lim g(z,T)f(x)dx
T—o0 oo T—oo
a+h
= f(z)dz = F(a+h) — F(a— h)
a—h
From above equation and we obtained. Thus the theorem is proved for a random
variable of the continuous type. For a random variable of the discrete type the proof
is similar; it is only necessary to replace the integrals by series. If the characteristic
function ¢(t) is absolutely integrable over the interval (—oo, +00), then the corresponding
density function f(x) can be determined ! by ¢(¢). In fact, from the absolute integrability
of the function ¢(¢) it follows that the improper integral (above eqaution) exists.

Dividing both sides of equation by 24, we then have

Flx+h)—F(z—h 1 T sin ht it
( )2h ( ):%/ L (1) dt (1.50)

—00

where = + h and = — h are continuity points of F'(z). When h — 0, the expression
under the integral sign tends to e~“*¢(t). Moreover, the expression under the integral
sign is, in absolute value, not greater than |¢(¢)|, which by assumption is integrable. It
follows that we can pass to the limit with 4 — 0 under the integral sign in expression
(1.50). Then we obtain

li = —
hlir(l) 2h 2

Pt —Fleot) 1 (" ey,

—0o0
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Since the right-hand side of this equation is a continuous function of =, we obtain

1 [t

F'(z) = f(x) = 2—/ e " o(t)dt (1.51)
™ —0o0

From the absolute and uniform convergence of the last integral it follows that the

density F’(x) exists and is a continuous function. Thus formula (1.50) allows us to

determine the density f(z) from the characteristic function ¢(¢), under the assumption

that ¢(t) is absolutely integrable.

Example 1.5.1 The characteristic function of the random variable X is given by the

formula
2
¢(t) = exp (—%) (1.52)
From the above equation, we obtain
1 +o00 t2
f(z) = gy /_Oo exp(—itz) exp (—§> dt
1 [t (t +ix)? (ix)?
—%/_mexp[— 5 ]exp 2dt

_ \/%exp (—‘%2) \/%/:O exp {—M] it = le_weXp <_%2)

If the random variable X is of the discrete type and can take on only integer values, then
its probability function can easily be obtained from the characteristic function For every

integer k, let

¢(t) _ Z pkezkt
k=—0o0
Let k' be a fixed integer. Then we have
Tty = Y e Pp oy
g

Integrating both sides of this equation from — to +n and using the fact that for every
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k # k', we have

we obtain, replacing k' by k,
Pr = i /ﬂ e*itkgb(t)dt (153)
2m J_,

Example 1.5.2 Let us find the density function of the random variable X, whose characteristic
function is

1L—|t| for Jt| <1
o1(t) = (4.5.8)
0 for |t| >1

It is obvious that the function ¢,(t) is absolutely integrable over the interval ( —oo <

t < 400 ). From formula, we obtain

1 +o00 y 1 0 y 1 1 y
= — g (tdt = — | (1+tHe dt+— [ (1—t)e *dt
fa) =g [ o= o [ aene i o [ a-ne
0 ) efitz 0 1 0 X
/ (1+t)e_mdt—{ : (1+t)] —— [ e ™t
-1 —iT _1 —ir J_q
11 [e—mr
=——+—|=
wo i | =i |
1 1
- 1_ T
iz (ix)? ( )
1 ) efitx 1 1 1 .
/(1—t)emdt:{ , (1—t)} +— | e "dt
0 —1T o )y

T T

1 1 [e=]' 1 1 .
{ : ] =—+ (e’” — 1)
—iz |, (iz)

We then have

f(x) . (2—e"—e™) = ! (1 S 6%) _ Lo (1.54)

22 T2 2 T2

Let us now consider the random variable Y of the discrete type, with the probability
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function defined by the formulas

P(Y =0) = % (1.54 a)
PlY = (2k — 1)7] = ﬁ (k=0,+1,42,...)
The characteristic function of this random variable is
_1 i Git(2k—1)
2 = 27r2
_ % L2 i‘“ cos(2k — 1)tm +isin(2k — 1)t (154 b)

(2k — 1)?

k=—00
cos(2k — 1)tm
7r2 Z (2k — 1)?
We shall show that for |t| < 1 we have

$1(t) = ¢alt)

Let Us Sum Up

Learners, in this section we have seen that determination of the distribution function

by the characteristic function and also given theorems and applications.

Check Your Progress

1.To recover the distribution function Fx(x) from its characteristic function ¢x (¢), one
must use:

A. The fourier transform of ¢x ().

B. The inverse Fourier transform of ¢x(t).

C. The Laplace transform of ¢x ().

D. The moment generating function of ¢x ().

2. If the characteristic function ¢x (t) of a random variable X is given, the distribution
function Fx () can be computed by:

A. Differentiating ¢ x (¢) with respect to ¢ and evaluating at ¢t = 0.
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B. Integrating ¢y (t) with respect to ¢ and evaluating at ¢ = 0.
C. Using the inverse Fourier transform of ¢x(¢).
itX]

D. Computing E[e***] for various values of t.

1.6 Characteristic Function of Multidimensional Random
Vectors

Expanding the function v (¢) = |¢| in the interval |¢| < 1 in a Fourier series, we have

Y(t) = % + Zan cos nmt

n=1

We compute the coefficients of this expansion from the formulas

1
Qo 1
D= ==
2 /0 2

1 . 1 1
2t t 2
a, = 2 / t cosnwtdt = {—sm nr } - — / sin nmtdt
0 0

nm 0 nm

2 |:—COS7’L7Tt}1 cosnm — 1
| =

nm nw 0 m2n2

For even n we have a,, = 0, and for odd n, that is, for n = 2k — 1, we have

4
921 T g 122

Finally we obtain

1 4 2%k — xt
bt =ltl=5-— —Coigk - 1)27T (1.55)
k=1

From above formulas and we have ¢,(t) = 1 — |[t| = ¢:(¢), in spite of the fact that
¢1(t) and ¢-(t) are the characteristic functions of two different distributions. We
observe that for |[t| > 1 the characteristic functions ¢(¢) and ¢.(¢) are not equal.
In fact, from the definition we then have ¢;(¢) = 0, whereas the function ¢»(¢) is not
identically zero since the values taken by this function in the interval |¢| < 1 repeat

periodically. The notion of the characteristic function of a one-dimensional random

27



variable can be generalized to a random variable with an arbitrary finite number of
dimensions. We restrict ourselves to two-dimensional random variables. Let (X,Y)
be a two-dimensional random variable and let F'(z,y) be its distribution function. Let
t and u be two arbitrary real numbers. The characteristic function of the random

variable (X, Y") or of the distribution function F'(z,y) is defined by the formula
¢(t,u) = E [e/0XT)] (1.56)

Example 1.6.1 The two-dimensional random variable can take on four pairs of values:
(+1,41), (+1,—1),(—=1,+1), and (—1, —1) with the probabilities

PX=1Y=1)=-PX=1Y=-1)=

Wl

1
PX=-1Y=-1)=¢

| = W=

PX=-1Y=1)=

The reader can verify that X and Y are independent. For the characteristic function of

the random variable ( X,Y ), we obtain from the equation ¢(t,u) = E (e!*X+vV)) =

%ei(t+u) + %6i(t7u) + %ei(fﬂru) + %ei(ftfu)

(eiu 4 efiu) (2€it 4 efit)

=

— %eit (eiu 4 efiu) + éeit (eiu 4 efiu) —

1 ..
= —cosu(3cost +isint)

We shall investigate some of the properties of characteristic functions of multidimensional

random variables. We have
925(0, 0) - F (ei(0X+0Y)) — 1‘¢<t, u)| — ‘E (6i(tX+uY))} < E (|ei(tX+uY)D =1 (157)

Hence
ot u)| < 1 (1.58)

O(—t,—u) = B (e ") = (t, u)

It can be shown that, as in the one-dimensional case, if all the moments of order k of a

multidimensional random variable exist, then the derivatives

OFo(t,u)

m forl:O,1,2,...,l€ (1.59)
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exist and can be obtained from the formula

OFp(t,u) B

W — E (Xk lyl tX+uY)) (160)
u

From the above equation, we see that the moment my._;; can be obtained from the formula

1 [0Fp(t,u)

mi—iy = E (XY = — | ——~ 1.61

kbt ( )= | aviou =0 (1.61)
For the moments of the first and second order we obtain the expressions — m;o = + [84)&’“)} o
u=0

u 2 u 2 u 2 u
% [8¢8(2 )]t:O’ m20 = 112 |:8 81(&1;7 ):|t 0 M = z% |:88¢7)fg1; )]t:O Moz = 7%2 [6 31(; ):|t:0' We
O —

u= u=
obtain the characteristic functions of the marginal distributions of the random variables

X and Y from formula of equation by putting u = 0 or t = 0, respectively. Thus

o(t,0) = E (") = ¢1(t) (1.62)

This is simply the characteristic function of X. Similarly,

¢(0,u) = E (e") = ¢a(u) (1.63)

is the characteristic function of Y. We shall now give without proof the generalization of
theorem to two-dimensional random vectors. The proof is similar to that for a one-dimensional

random variable.

Theorem 1.6.2 Let ¢(t,u) be the characteristic function of the random variable (X,Y).
If the rectangle (a —h < X <a+ h,b—g <Y < b+ g) is a continuity rectangle, then

Pla—h<X<a+hb—g<Y <b+yg)

+T 4T ht
= lim —/ / sin it sin gu exp[—i(at + bu)|p(t, u)dtdu

u

Thus, if we know ¢(t, u), formula (1.63) allows us to determine the probability
P(l’l <X < To, Y1 & Y < y2> (1.64)

for an arbitrary continuity rectangle. However, the probabilities (4.6.12) for continuity
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rectangles completely determine the probability distribution in the plane (x,y).

Theorem 1.6.3 Let F(z,y), Fi(z), Fa(y), ¢(t,u), ¢1(t), and ¢2(u) denote the distribution
functions and the characteristic functions of the random variables (X,Y), X and Y,
respectively. The random variables X and Y are then independent if and only if the
equation

P(t,u) = ¢1(t)d2(u) (1.65)

holds for all real t and .
Proof: Suppose that X and Y are independent. From theorem we have, for any real t

and u
o(t,u) = F (ei(tX+”Y)) = E (¢"e™) = E (e") E (e") = ¢1(t)pa(u)
We obtain the equation
PXi< X<z, <Y <yy)=P(x; <X <z)P(h <Y <)

which is valid for arbitrary continuity rectangles. From the above equation we obtain, for
arbitrary x and y
F(z,y) = Fi(z)F2(y)

Thus the theorem is proved. The following Cramer-Wold theorem is useful in the theory

of random vectors.

Theorem 1.6.4 Prove that distribution function F(z,y) of a two-dimensional random
variables (X,Y) is uniquely determined by the class of all one-dimensional distribution
functions of t X + uY, where t and u run over all possible real values.

Proof: Suppose we are given for all real t and u the characteristic functions ¢,(v) of
Z=tX+uY, ¢,(v)=E{expliv(tX +uY)]} = E{expli(vtX +vuY)]}. Puttingv = 1,
we obtain for the right-hand side of the expression

E{expli(tX + uY)]}

which is the characteristic function ¢(t,u) of the distribution function F(x,y). According
to the function ¢(t,u) uniquely determines F'(x,y). Thus the theorem is proved. Let us
write

P(tX +uY <z)=P(Xcosa+Ysina <w)
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where cosa = \/ﬁ, sina = \/#W’ w = \/ﬂiw(() < a < 27). The Cramer-Wold
theorem can now be formulated in the following way: The distribution function F(x,y)
is uniquely determined by the distribution functions of the projections of (X,Y’) on all

straight lines passing through the origin. With probability 1, (X,Y) satisfies the inequality
X*+Y?< R <0

then the distribution function F(z,y) is uniquely determined by the class of distribution
functions of X cosay + Y sin «, where a runs over an arbitrary countable set of different

values from the interval |0, 27|.

Let Us Sum Up

Learners, in this section we have seen that he characteristic function of multidimensional

random vectors and applications.

Check Your Progress

1. The characteristic function of a multidimensional random vector X = (X1, Xs, ..., X)T
is defined as:

A. E[e*X]

B. ]E[etTX]

C. E[e*¥]

D. E[etX]

2. If X and Y are independent d-dimensional random vectors with characteristic
functions ¢x(t) and ¢v(t), respectively, the characteristic function of X + Y is:

A. ¢x(t) - oy (t)

B. ¢ox(t) + oy (t)

C. ox(t) - ov(—t)

D. ¢x(t) + ¢y (—t)
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1.7 Probability-Generating Functions

When investigating random variables which take on only the integers £ = 0,1,2,...
it is simpler to deal with probability generating functions than with characteristic

functions. Let X be a random variable and let
p=PX=k (k=0,1,2,...)

where >, pp = 1.

Definition 1.7.1 The function defined by the formula
U(s) = pis (1.66)
k

where —1 < s < 1, is called the probability generating function of X. We notice
that ¢(1) = >, pr = 1. Hence the series on the right-hand side of above eqaution
is absolutely and uniformly convergent in the interval |s| < 1. Thus the generating
function is continuous. It determines the probability function uniquely, since ¢ (s) can

be represented in a unique way as a power series of the form the above eqaution.

Example 1.7.2 The random variable X has a binomial distribution, that is,

= (Z)pk(l )" (k=0,1,....n)

Therefore

n

006 =3 ()10t = s+

k=0

Example 1.7.3 The random variable X has a Poisson distribution, that is

)\k
pk:e“F (k=0,1,2,...)
Therefore
_ -\ ()\S)k =X As . _—A(1—s)
P(s) = E e =e et =e (1.67)

The moments of the random variable X can be determined by the derivatives at the point

1 of the generating function. Let us for example, determine the moments of the first and
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second order. We have

1.8 Let Us Sum Up

Learners, in this section we have seen that probability-generating functions and applications.

Check Your Progress

1. If X is a discrete random variable with probability mass function px (), the probability
generating function G x(¢) is given by:

A Gx(t) =32, e"px(x)

B. Gx(t) = 2., t"px ()

C. Gx(t) = X, px(x)e™

D. Gx(t) = ¥, ¢*"px (a)

2. Which of the following properties is true about the probability generating function
Gx(t) of a discrete random variable X?

A. Gx(t) is always a real-valued function.

B. Gx(1) = 1.
C.Gx(t
(

)
) is always a polynomial.
D. G'x(t) can be used to compute the mean and variance of X directly.

Glossary

1. The ¢(t) = E (e™) is characteristic function of ¢.
2. The function f(x) is density function of z.
3. The function Mx(t) is moment generating function of ¢.

4. The p, is rth order moment.
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1.9 Unit Summary

The first unit content on properties of characteristic functions, characteristic function
and moments, semi-invariants, the characteristic functions of sum of independent
random variables, determination of distribution function of the characteristic function

and probability generating function.

Self-Assessment Questions

Short Answers: (5 Marks)

1. Prove that the function ¢(t) = exp(—|t|") with » > 2 is not the characteristic

function of any random variable.

2. Prove that the characteristic function of a random variable X is real if and only

if X has a symmetric distribution about 0.

3. Let (p(t) be the characteristic function of the random variable X. Prove that, if

X is of the continuous type, then limy|_. (¢(t) = 0.

4. Let (p(t) be the characteristic function of the random variable X then prove that

if X is of the discrete type, then limy o sup (p(t) = 1.

5. Prove that if (¢(¢) is the characteristic function of a random variable then so is

|(e(t)]

Long Answers: (8 Marks)

1. Let (¢(t) be the characteristic function of the random variable X. Prove that
(a) if X is of the continuous type, then lim;_,o (¢(t) = O
(b) if X is of the Discrete type, then lim; .., sup (¢(t)=1.

2. Show that the characteristic functions (¢ (t) , (¢2(t), and (p3(¢)may satisfy the

relation (¢1(t)(2(t) = (1(t)(s(t)
in spite of the fact that (¢2(¢), and (p3(¢)are not identically equal.

34



3. Find the characteristic function and the moments of a normal distribution

4. The characteristic function of the random variable X is given by:
t2
¢(t) = exp (—5) :

Exercises

1. Find the characteristic functions of the random variables whose densities are (a)

0 for |z|>a>0

fz) =
el for |z[<a
(b) (a9
o) = 22

2. Prove that the function

¢(t) = exp (—[t[")
with > 2 is not the characteristic function of any random variable.

3. Let ¢(t) be the characteristic function of the random variable X. Prove that (a)
if X is of the continuous type, then limy_,., ¢(t) = 0, (b) if X is of the discrete
type, then lim_,o sup |¢(t)] = 1.

4. Prove that (a) if ¢(¢) is the characteristic function of a random variable, then so

is [ (t) .

5. Prove that the characteristic function of a random variable X is real if and only

if X has a symmetric distribution about 0.

Answers to Check Your Progress

Section (Modulo) 1.1
1.B.Z=0
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2. A. E (¢"X)

Section (Modulo) 1.2

1. B. The characteristic function is defined for all real ¢, while the M GF is defined
only for ¢ in a neighborhood around zero.

2. A. Differentiating ¢ (¢) with respect to ¢ and then evaluating at ¢t = 0.
Section (Modulo) 1.3

1. A. The expectation of X* for some integer k.

2. D. The characteristic function of X.

Section (Modulo) 1.4

L Agx(t) - oy (t)

2.D. ¢x,(t) - dx,(t) -+ - ox,, (1)

Section (Modulo) 1.5

1. B. The inverse Fourier transform of ¢x (¢).

2. C. Using the inverse Fourier transform of ¢x(¢).

Section (Modulo) 1.6

1. AE[e""X]

2. A.gx(t) - oy (t)

Section (Modulo) 1.7

1.B. Gx(t) =), t"px(x)

2.B.Gx(1)=1.
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Unit 2

Probability Discrete Distributions

Objective

This course aims to teach the students about some discrete probability distributions
with one-point and two-point distributions. The Binomial distribution, Poisson and
generalized binomial distribution and Polya and hyper-geometric distributions. Also

Poisson distribution and uniform distribution.

2.1 One-Point and Two-Point Distributions

In this section we investigate to more closely some probability distributions of special

importance in either theory or practice. We begin with the one-point distribution.

Definition 2.1.1 The random variable X has a one-point distribution if there exists a

point x such that
P(X =) =1 2.1)

We also say that the probability mass is concentrated at one point. It is clear that a
random variable with a one-point distribution has a degenerate distribution. Formula

(2.1) gives us the probability function. The distribution function of this probability

37



distribution is given by the formula

0 forz < xg
F(z) = (2.2)

1 forz >z

We obtain the characteristic function of this distribution from the formula
B(t) = e (2.3)

We know that see that m; = z, and, more generally, we have m; = z,* for every k.
Hence we obtain

D*(X)=my—m] =1t —25=0

Conversely, if the variance of a random variable X equals zero, then X has a one-point

distribution. To prove this suppose that

D*(X)=E[X —EX)*=0 (2.4)

Let Us Sum Up

Learners, in this section we have seen that definitions of one point and two point

distributions.

Check Your Progress

. Which of the following is a property of the binomial distribution?

. The number of trials is infinite

. The probability of success is constant across trials

. The trials are not independent

. The distribution is continuous

. What is the mean of a normal distribution with parameters ; and o2?
e

0.2

oW P> NMNO O W B =

!
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D. p+ o?

2.2 Bernoulli Scheme of Binomial Distribution

Since the expression [X — F(X)]? is non-negative, equation (2.4) is satisfied only if;
PIX -E(X)=0=1, or PX=EX)|=1

From (2.1) we find that the random variable X has a one-point distribution.

Definition 2.2.1 The random variable X has a two-point distribution if there exist two

values x, and x,, such that;

P(X=xz1)=p, PX=z)=1-p (0<p<1) (2.5)

P(X=1)=p, P(X=0)=1-p (0<p<l) (2.6)

This distribution is called the zero-one distribution. The characteristic function of

distribution (2.6) is given by the formula;
o(t) =pe™ + (1 —p)e"® =pe +1—p=1+p (e’ —1) 2.7)

We obtain for every k
mi =p (2.8)

Hence
D*(X)=my—mi=p—p*=p(l—p) 2.9)

Then,
pig = mg — 3mymy + 2m3 = p — 3p* + 2p° = p(1 — p)(1 — 2p)
_ s p(1—p)(1—2p) 1-2p

= ,ug/2 - p3/2(1 _p)3/2 - p(l —p)

We see that if p = 0.5 then v = 0 since here X has a symmetric distribution. From
the following scheme of trials, called the Bernoulli scheme, we obtain a random

variable X with binomial distribution. We perform n random experiments. Through an
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experiment we can obtain the event A, which we designate a success, with probability
p, or the complementary A, which we designate a failure, with probability ¢ = 1 — p.
The results of the n experiments are independent. As a result of n random experiments,
event A may occur k times (£ = 0,1,2,...,n). The number of occurrences of A is a
random variable X that can take on the values £ = 0,1,...,n, where the equality
X = k means that in n experiments the event A has occurred k times. It is that X has

the binomial probability function given by the formula

P(X =k) = (Z)pk(l — )k (2.10)

The distribution function of the binomial distribution is given by the formula

Fz)=P(X <z)=>)_ (Z)pk(l _

k<x

where the summation extends over all non-negative integers less than x. We notice
that for n = 1 the binomial distribution is reduced to the zero-one distribution. For
n > 2 the binomial distribution can also be obtained from the zero-one distribution
as follows. Let X,(r = 1,2,...,n) be independent random variables with the same

zero-one distribution. The probability function of every X, has the form
P(X,=1)=p, P(X,=0)=1—p
Consider the random variable equal to the sum of the X,
X=X1+Xo+...+ X, (2.11)
The random variable X can take on the values £ = 0,1,2,...,n. The event X = k
occurs if and only if k£ of the n random variables X, take on the value one and n — k of
them take on the value zero. For a given k this may happen in (}) different ways. By

the independence of the random variables X, we obtain formulas (2.10). From (2.7)

and (2.2), for the characteristic function ¢(¢) of X, we obtain

o(t)=[1+p(e"=1)]" (2.12)
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We obtain the moments of this distribution. In particular,

my, = np, my = np + n(n — 1)p? (2.13)
p2 = np(1 — p), 3 =np(l —p)(1—2p)
We then have
1-2
v = P (2.14)
np(1 —p)

We have already obtained the formula for y, by another method.

Example 2.2.2 The above table gives the binomial distributions for the values p; =
0.1,ps = 0.3, and p3 = 0.5 for n = 20. The first column gives the values k = 0,1, ...,20
and the remaining columns the probabilities that the random variable takes on the value

k. These probabilities are given with a maximum error of 0.00005 .

Table
P(X = k) P(X = k)
kEipr=01|p=03|p3=05| k |[pr=01]p,=03]|p3=0.5
0| 0.1216 | 0.0008 -1 11 - 0.0120 | 0.1602
1| 02702 | 0.0068 -1 12 - 0.0039 | 0.1201
2| 0.2852 | 0.0278 | 0.0002 |13 - 0.0010 | 0.0739
3| 0.1901 | 0.0716 | 0.0011 | 14 - 0.0002 | 0.0370
4| 0.0898 | 0.1304 | 0.0046 | 15 - - 0.0148
5] 00319 | 0.1789 | 0.0148 | 16 - - 0.0046
6| 0.0089 | 0.1916 | 0.0370 | 17 - - 0.0011
7| 0.0020 | 0.1643 | 0.0739 | 18 - - 0.0002
8| 0.0004 | 0.1144 | 0.1201 | 19 - - -
9| 0.0001 | 0.0654 | 0.1602 | 20 - - -
10 -| 0.0308 | 0.1762

We know that p is to 0.5 , the more symmetric is the distribution and the greater its

dispersion. We might have expected these results from comparing the values of the
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parameters s and ~y for the considered values of p with n = 20. These values, computed
from (2.4) and (2.5) are given in below table.

pr=01 py=03 p3=0.5

o=\ 134 205 224
v 0.597 0.195 0.000

Let X and Y be two independent random variables with binomial distributions and let

the characteristic functions of X and Y be, respectively

Consider the random variable
J=X+Y

Because of the independence of X and Y, the characteristic function of Z is;

o(t) = [1+p (e —1)]™™ (2.6)

As we see from (2.6), Z has the binomial distribution with n = n; + ny. This is the
addition theorem for the binomial distribution. In applications we often deal with the
distribution of

Y =—
n

where the random variable X has the binomial distribution. The random variable Y can

take on the values
k

| 1
—0,-,..., "
n n

1
n

Since the probability that Y = k/n is equal to the probability that X = k, the probability
function of Y is given by (2.1)

P (Y = E) —P(X=k)= (Z)pk(l _ )k

n
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Let Us Sum Up

Learners, in this section we have seen that the definition of Bernoulli scheme of the

binomial distribution and example.

Check Your Progress

OO0 WP NMNOD oW p o

. What are the parameters of a binomial distribution?

. Mean and variance

. Number of trials and probability of success

. Mean and standard deviation

. Rate and shape

. What is the probability mass function (pm f) of the binomial distribution:
L P(X =k) = gt (L —p)*

F(n—R)!
) = s (L= )"
) = w1 = p)"
)

= Wik)!pk(l —p)*

n!

2.3 Poisson Scheme of Generalized Binomial Distribution

We know that the characteristic function of Y is;

o(t) = [1+p (et —1)]" (2.7)

From the characteristic function we obtain the moments. In particular,

n—1 p(l—p
p27 M2 = ( )
n n

my = p, meo = % —+ (28)

Poisson considered the following scheme of experiments. We perform n random trials.

As a result of the k th trial (k = 1,2,...,n), the event A (or a success) may occur

with probability p,; thus the probability of the complementary event, ¢, = 1 — py.

The results of the n experiments are independent. Unlike Bernoulli’s scheme, here

the probabilities of the occurrence of event A in individual trials are not necessarily

equal. The number of occurrences of A in n trials is a random variable. We say that
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this random variable has a generalized binomial distribution. The random variable Z

with the generalized binomial distribution can also be represented as the sum
Z=7I+...+2, (2.9)

where the random variables Z,(k = 1,2,...,n) are independent and have the zero-one

distribution with the probability functions;

The formula for the probability function of the random variable 7 is not as simple
as that for the probability function of the binomial distribution. The probability that
Z = r can be found by the summation of the probabilities of each possible combination

of r I’'sand (n — r)0’s.

Example 2.3.1 We have three lots of oranges. The fraction of rotten oranges in the first
lot is p; = 0.02, in the second, p, = 0.05, and in the third, p; = 0.01. We choose one
orange at random from each lot. We assign the number one to the appearance of a good
orange, and the number zero to the appearance of a rotten one. Here 7, Z5, and Z3 are
random variables which take on the value 0 or 1, according to whether we have obtained
a rotten or a good orange from the first, second, or third lot. These random variables are

independent, and we have;
P(Z=1)=098,P(Zy,=1)=095P(Z;=1) = 0.99

Consider the random variable Z = Z, + Z5 + Zs. This random variable can take on the

values r = 0,1, 2, or 3.

Let Us Sum Up

Learners, in this section we have seen that the defintion of Poisson scheme and the

generalized Binomial distributions with examples.
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Check Your Progress

1. If a binomial random variable X has parameters n = 10 and p = 0.3, what is the
mean of the distribution?

.10x0.3=3

L10x07=7

.0.3x0.7=0.21

.0.3x10=30

. What is the variance of a binomial distribution with parameters n and p?
-np(1 —p)

np

.n*p(1 —p)

.n(l—p)

U0 wW»NUO 0w >

2.4 Polya and Hypergeometric Distributions

As a result of the independence of 7, 75, Z3 we obtain the probabilities

P(Z =0) =P (Z =0) P(Zy = 0) P(Z; = 0) = 0.00001

+ P(Z=1)P(Zy=1)P(Z3 =0) = 0.07663

P(Z=3)=P(Z =1)P(Zy=1)P(Z3 =1) = 0.92169

then
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The characteristic function of 7, defined by (2.1) to have a generalized binomial

distribution, can be obtained from (1.7) using the independence of the Z;, namely
=[] [t +pe(e"=1)] (2.10)
k=1

We compute the first two moments of Z. We have

mi=Y pr, my= ZPk"’ZZPlZ%; pa =Y i (1—pr) (2.11)
h=1 k=1

=1 k=1

As we see, formulas (2.4) for m,, mo, and s are particular cases of the corresponding
formulas (2.3).

Example 2.4.1 We compute the expected value and the standard deviation of the random

variable Z of example. We have

B(Z) = mi = (1—p1) + (L= po) + (1 — pg) = 2.92

o = \/ltz = v/0.0196 + 0.0475 + 0.0099 = +/0.0770 = 0.28

In practice we often deal with distributions which can be reduced to a scheme called the
Polya scheme. Imagine that we have b white and c black balls in an urn. Let b+ ¢ =
N. We draw one ball at random, and before drawing the next ball we replace the one we
have drawn and add s balls of the same color. This procedure is repeated n times. Denote
by X the random variable which takes on the value k(k = 0,1,...,n) if as a result of n
drawings we draw a white ball k times. We shall find the probability function of X. We
notice that the probability of the successive drawing of k white balls is;

b(b+s)...[b+ (k—1)s]
N(N+s)... [N+ (k—1D)s]

Similarly, the probability of drawing k white balls in turn and then n — k black balls is;

bb+s)...[b+ (k—1)sle(c+s)...[c+ (n—k—1)s]
N(N+3s)...[N+(n—1)s]

We notice that the last expression also gives the probability of drawing k white and n — k

black balls in any given order. The order of drawing affects only the order of the terms in

46



the numerator of this expression. Since k white and n — k black balls can be drawn in (})
different ways, we have (2.1) P(X =k)

(n)b(b—l—s)...[b—i—(l{:—l)s]c(c+s)...[c+(n—kz—1)3]
k N(N+s)...I[N+(n—1)s]

Definition 2.4.2 The random variable X with the probability distribution given by (2.1)

has a Polya distribution. Denote
Np=b,Ng=c¢,Na=s

As we see, p and q are the probabilities of drawing a white and a black ball, respectively,

on the first drawing. Formula (2.1) takes the form (2.2) is;

. (n\plpta)...[p+(k=1alglg+a)...[g+ (n—Fk—1)a]
P<X_k>_(k:) (14 a)...[14+ (n—1)q

It is obvious that Y7, (})~ . +a)"'[pﬁ((l:rg)o.‘.]_‘ﬁﬂzl'1')[‘5]“(”_]“ —bal — 1. We shall compute the

first and second moments of X. The first moment is given by the formula

BE(X) zng(X:k) =pn§ (Z:D

p+a)...[p+(k—1Dalgl¢g+a)...[¢+ (n—k —1)q]

x 1+a)...1+(n—1)a]

Putting [ = k£ — 1, we obtain

n—1

B n—1\(p+a)...(p+la)glg+a)...[¢+ (n—1—-2)q]
E(X>_p”lz;< z ) (+a)..[l+0n-1)a (2.12)

It is easy to verify that the term under the summation sign in the last formula represents
the probability of obtaining / white and n —[/— 1 black balls in n — 1 drawings according
to a Pélya scheme where at the beginning the urn contains N + s balls, including b + s
white and ¢ black ones. From (2.3) it follows that the sum on the right-hand side of
(2.4) equals 1; hence

E(X)=np (2.13)
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For the second moment we obtain

:é;ﬁp( —k—JWE:kC?_v

" (p+a)...[p+(k—1Dalgl¢+a)...[¢+ (n—k—1)q]
(1+a)...[1+(n—1)q]

Putting [ = k — 1 we obtain £ (X?)

_”pZ“Fl( )(P+Oé) (p+la)glg+a)...lg+(n—1-2)a]

(I+a)...[1+ (n—1)q]

(14+a)...[14+ (n—1)q]

n—l(n_1)<p+a> (p+l0)a(q +0) [q+<n—l—2>a1}

(1+a)...[l+(n—1)

_np<n 1[ n—l (p+a)...(p+la)glg+a)...[¢g+ (n—1—2)a]

+

=0

=np(A + B).

After some simple transformations we have

n—2

r=0

X(p+2a)...[p—i—(T+1)a]q...[q+(n—r—3)a]
(142a)...[14+ (n—1)q]

Expression B is identical with the sum in (2.14); hence B = 1. We notice further that
the term under the summation sign in (2.6) is the probability of drawing r white and
n — r — 2 black balls in n — 2 drawings according to a Polya scheme where the urn
contains N + 2s balls at the beginning, among which b + 2s are white and ¢ are black.
Thus we obtain from (2.3)

_(pt+a)(n—1)
1+«
Finally,
+a)(n—1) np + q + na
B(X?) = np | P 1| =pppTaT e 2.15
( ) 14+« * P 14+« ( )
Using (2.5), we obtain
14+ na
D*(X) = 2.16
(X) = npg~ o (2.16)
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The Polya scheme can be applied to such phenomena as infectious diseases where the
realization of an event (appearance of the disease) causes an increase in the probability
of being infected with the disease. In the Polya scheme s may also be negative. Since
the inequalities

b+(k—1)s>landc+(n—k—-1)s>1

must hold, £ must then satisfy the double inequality

-1 1-0
maX(O,n—1+c )Skgmin(n, +1)
S S

Let N, b, and ¢ tend to infinity so that

b
p=; = constant. (2.17)

Here, of course, ¢ = 1 — p is also constant. Suppose that lima = 0. N — oo this
condition will be satisfied, in particular, if s is constant and N tends to infinity. It
follows from (2.1) and (2.2) that

lim P(X = k) = <”) prgn* (2.18)

N—oo k

We have proved the following theorem.

Theorem 2.4.3 If for N = 1,2, ... equality (2.10) is satisfied and lim o = 0, then the
probability function of the random variable X with the N — oo Polya distribution tends
to the probability function of the binomial distribution as N — oo. A particular case
of the Polya distribution is the hypergeometric distribution. In this distribution s = —1,
which simply means that we do not replace the ball which has been drawn before drawing
the next ball. The probability function of the hypergeometric distribution can be obtained
from (2.2) by putting « = —1/N. We obtain for k satisfying the double inequality
max(0,n — Nq) < k < min(n, Np) P(X = k)

~ (n\Np(Np—1)...(Np—k+1)Nq...(N¢g—n+k+1)
B ) N(N—-1)...(N—=n+1)

o
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The expected value E(X) equals np, and formula (2.9) for the variance takes the form

D¥(X) =

N lnpq (2.20)
The hypergeometric distribution is often applied in statistical quality control of mass
production. For example, let the lot under control consist of b good items, and N — b = ¢
defective items. Here a good item plays the role of a white ball; a defective item, the role
of a black ball; and the lot under control, the role of the urn. From the lot we draw n
items at random to determine their quality; usually the chosen items are not returned to
the lot. If the numbers b and c are known, by using the formulas obtained previously we

can compute the probability that among n chosen items there are k good ones.

Let Us Sum Up

Learners, in this section we have seen that the definition of Polya and Hypergeometric

Distributions and also given theorems and examples.

Check Your Progress

1. What is the expected value of a hypergeometric distribution with parameters N, K,

and n?

nk

N

N—nK
N

zlx 2=

What is the variance of a hypergeometric distribution with parameters N, K, and

3D U 0w R

D

nK(N—K)(N—n)
N2(N-1)
nK(N-K)
N
K(N—K)(N—n)
N2
nk
N

S0 w»
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2.5 Poisson Distribution

If b and ¢ 4re unknown, and the investigation of the quality of some number of items
may serve to estimate these numbers. In example 2.1 we considered a random variable
X with a Poisson distribution. Let us summarize the most important properties of such
a random variable. Such a random variable can take on the values » = 0,1,2,... Its
probability function is given by the formula

A

P(X =r)= e (2.21)

where ) is a positive constant. According to (2.6) its characteristic function has the

form

o(t) = M)

From (2.7) to (2.9), we obtain

The probability function (2.6) can be obtained as the limit of a sequence of probability

functions of the binomial distribution. We shall prove Poisson’s theorem.

Theorem 2.5.1 Let the random variable X,, have a binomial distribution defined by the

formula |
n!
PX,=r)=—p (1—p)"" 2.22
( r) r!(n_r)!m p) (2.22)
where r takes on the values 0,1,2, ... ,n. If for n = 1,2, ... the relation
A
p=1 (2.23)
n
holds, ! where \ > 0 is a constant, then
: ATy
lim P(X, =r)=—e¢ (2.24)
n—oo rl

Since the expected value of X, is np, condition (2.24) means that as n increases the
expected value of X,, remains constant. ' The assertion of this theorem will still hold if
relation (2.24) is replaced by

lim np = A

n—oo
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Proof: Let us transform formula (2.24) in the following way:

e ()
:£<1_§)nn(n—1)...(n_r+1> .

v )

Using the fact that
A 1 (1-2)
lim (1-=) =e* and i 2
o ( n) ¢ an oo we obtain formula (2.24).

One of the binomial distribution with n = 5 and p = 0.3, hence A\ = np = 1.5, and one
of the Poisson distribution with the same expected value A = 1.5. And two such graphs
for n = 10 and p = 0.15; hence again A = 1.5. For larger values of n, for instance,
n = 100, the graphs of the binomial and Poisson distributions will almost coincide. Often
the Poisson distribution is interpreted as a distribution of a random variable which can
take on many different values (the number n is large) but with small probabilities (the
probability p = \/n is small). That is why the Poisson distribution is sometimes called
the law of small numbers. However, as is shown by the next two examples, this name is
not justified. Bortkiewicz, who has investigated the Poisson distribution, has given some

empirical examples of random events to which this distribution can be applied.

Example 2.5.2 Computed the number of soldiers in ten cavalry corps who died within
a period of twenty years from a kick by a horse. We consider as a random variable the
number r(r = 0,1,2,...) of men in one corps killed in one year by a kick from a horse.
The number of observations was 10 x 20 = 200, that is, the observations concerned ten

army corps over a period of twenty years.

Table

The following frequencies of appearance of values of r. The frequencies of death from

a kick by a Horse.
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r 0 1 2 3 4

Frequency | 0.545 | 0.325 | 0.110 | 0.015 | 0.005

Probability | 0.544 | 0.331 | 0.101 | 0.021 | 0.003

From the central row of this table we compute the mean
E(X)=0-0.5454+1-0.325+2-0.110 +3-0.015 + 4 - 0.005 = 0.61
Let us compute the corresponding probabilities P(X = r) for the Poisson distribution

with A = 0.61. Usually we find these probabilities from Poisson distribution tables, but

here we compute them directly. We have

P(X =0)=¢e% =0.544

P(X =1)=0.61le "% =0.331

0612 —0.61

P(X =2) = 2—e| = 0.101
0613 ‘—0.61

P(X =3) = 3—e| = 0.021
0614 ‘—0.61

P(X =4) = 4—e| = 0.003

These values are presented in the lower row of above table. As we see, these probabilities
differ but little from the corresponding frequencies. In many physical and technical
problems we deal with distributions close to the Poisson distribution. Here we give an

example from physics.

Example 2.5.3 We present here the results of the famous experiments. They observed the
numbers of « particles emitted by a radioactive substance in n = 2608 periods of 7.5sec
each. These data are presented in table. In this table n; denotes the number of periods in
which the number of emitted particles was equal to i. The average number X of particles

emitted during a period of 7.5sec is

DL
n
and A
387 a4y
pPi = .—|€
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Table

The reader will notice the striking closeness of the second and third columns in above
table

i n; np;
0 57 54.399
1| 203 | 210.523
2| 383 | 407.361
3| 525| 525.496
4| 532 | 508.418
5| 408 | 393.515
6| 273 | 253.817
7| 139 | 140.325
8 45 67.882
9 27 29.189
10 16 17.075
2608 | 2,608.000

Just as for the binomial distribution we can prove the addition theorem for independent
random variables with Poisson distributions. Let the independent random variables X

and X, have the respective Poisson distributions

T
A,

rl

AT‘
., P(Xo=r)="2e™ (r=0,1,2,...)

P(XlzT): 7“'

Consider the random variable
X == X1 -+ XQ

According to (2.6) the characteristic functions of X; and X, are

¢1(t) = exp [)\1 (eit — 1)} ,  ¢a(t) =exp [)\2 (e“ — 1)}

By the independence of X; and X, the characteristic function of X has the form

o(t) = exp [(M + A2) (e — 1)] (2.25)
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Formula (2.25) represents the characteristic function of a random variable with the
Poisson distribution having the expected value \; + X\,. This proves the addition
theorem for independent random variables with Poisson distributions. Raikov has
proved that the converse theorem is also true: if X; and X, are independent and
X = X, + X, has a Poisson distribution, then each of the random variables X; and X,

has a Poisson distribution.

Let Us Sum Up

Learners, in this section we have seen that the definition of Poisson distribution distribution

with Illustrations.

Check Your Progress

. What is the parameter of the Poisson distribution?
. Mean

. Variance

. Rate or average number of occurrences

. Standard deviation

1
A
B
C
D
2. Which of the following scenarios is best modeled by a Poisson distribution?
A. Number of emails received in an hour

B. Height of individuals in a population

C. The time between arrivals of buses

D

. The number of successes in a series of trials

2.6 Uniform Distribution

Raikov’s theorem is true for an arbitrary finite number of independent random variables
Xi,...,X,. The simplest example of a random variable of the continuous type is a
random variable with the uniform distribution. In above example we considered a

particular case of the uniform distribution. The general definition is as follows.

Definition 2.6.1 The random variable X has a uniform, or rectangular distribution if

its density function f(x) is given by the formula
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>~ fora—h <x <a+ h, where a and h > 0 are constants
f(x) = (2.25 a)

0 otherwise

The distribution function F'(x) of this random variable is given by the formula

(
0 forz <a—h,
Flz) = 4 [r, de = r{o-h)  fora — h < = < a+ h, The characteristic function of
1 for x > a + h.
\
X is
1 ath 1 6itm a+h
H— - e gy = 2.25.b
o(t) Qh/ahe ! Qh(z’t)a_h (2:25.0)
1 eit(a-l—h) _ eit(a—h) i1 51T th
" 2h it  th
We obtain the moments directly from the formula
1 a+h . 1 (a 4 h)k—i—l _ (a _ h)k-i—l
_ dr = — - 2.26
TE=on ) T T gy k+1 (2.26)
In particular,
1
mi=a, My = 3 (3&2 + h2)
Hence
1
M2 = Ty — m% = §h2 (227)

By a linear transformation of X we can obtain a random variable with a uniform

distribution in the interval [0, 1]. To do this we write

The density of Y, which we shall denote by f(y), is given by the following formula:

1 in the interval [0, 1]
fily) = (2.28)

0 otherwise
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This is the rectangular distribution which we considered in above example. The
density of this distribution. In statistical problems we often deal with rectangular
distributions. It is worthwhile to mention that if the distribution function F'(z) of
the random variable X is continuous, then the random variable Y = F(X) has the
uniform distribution given by (2.6). In fact, to every infinite interval —co < X < =z
of values of the random variable X there corresponds the set of values of the random
variable Y contained in the interval 0 < Y < y = F(z). On the other hand, by the
assumption that the distribution function F'(z) is continuous, to every y(0 < y < 1)

there corresponds at least one z satisfying the relation
y=F(z)=P(X <) (2.29)

However, transformation (2.7) may not be one-to-one since the inverse image F'~*(y)
of some values of y may be an interval in which the function F'(x) is constant. Here,
for a given y we can take for + = F~!(y) any of the values of = from the interval in
which the distribution function F'(z) is constant, and for every such value of = we shall
have F [F~(y)] = y; in particular we can take as x = F'~*(y) the least x for which this
equality holds. If we denote by Fi(y) the distribution function of the random variable

Y, we obtain

Fi(y) = P(Y <y) = P[F(X) <y
0 fory <0

“\PX<FHyl=F[F(y]=y for0<y<l,

1 fory > 1

2.7 Let Us Sum Up

Learners, in this section we have seen that definition of uniform distribution and its
pdf.

57



Check Your Progress

. What is the mean of a continuous uniform distribution over the interval [a, b]?
atb
b

2

2
a

(=

atb

b_
b—a

2
For a discrete uniform distribution where X can take integer values from 1 to 10,

Q9

MO O e

what is the probability of any specific value?

1
A &

B.
C.
D.

Glossary

1. The function F'(z) is the distribution function of X.

2. The n and p is the parameters of Binomial distribution.
3. The p is mean of normal distribution.

4. The k is number of observations.

5. The Z is random variable with generalized binomial distribution.

2.8 Unit Summary

The second unit content on one-point and two-point distributions, the Bernoulli, Binomial
distribution and Poisson distribution. Also the generalized binomial distribution, Polya,

hyper-geometric distributions, Poisson distribution and uniform distribution.
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Self-Assessment Questions

Short Answers: (5 Marks)

> (1)) - (1)

1. Prove the equality

2. Prove that

i (;)pm(l —-p)" = = 1)?(!71 i /Op A B Ll )

m=k

Long Answers: (8 Marks)

1. Show that if the random variables X; and X, have zero-one distributions and
are uncorrelated, they are independent. Also check whether this property holds

for all two-point random variables.

Exercises

1. Let the random variable Z have a generalized binomial distribution. Show that if
the p; are functions of n such that y ;| p,, = \is fixed, and o, = max (p1, ..., pn)
tends to zero as n — oo, then prove that

r

lim P(Z =r) = 6_)‘)\—‘ (r=0,1,2,...)

n— 00 T

2. F(x) is the distribution function of a random variable X with the zeroone distribution.
Find the distribution function of the random variable Y = F'(X).
(a) Do the same for a random variable X with the binomial distribution.

(b) Do the same when X has the Poisson distribution.
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Answers to check your progress

Section 2.1

1. B. The probability of success is constant across trials.
2.C.u

Section 2.2

1. B. Number of trials and probability of success

2.A. P(X = k) = i (1 = p)"*

Section 2.3

1. A.10x0.3=3
2. A.np(1 —p)
Section 2.4

1A 2K

2. A % Section 2.5

1. C. Rate or average number of occurrences
2. A. Number of emails received in an hour
Section 2.6

1. A =2

2. A &

References

1. M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and sons,
New Your, Third Edition, 1963.

Suggested Readings

1. T. Veerarajan, Fundamentals of Mathematical Statistics, Yesdee Publishing, 2017.
2. P.R. Vittal, Mathematical Statistics, Margham Publications, 2002.
3. R.S.N. Pillai and V. Bagavathi, Statistics, Sultan Chand and Sons, 2010.

4. S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan
Chand and Sons, 2008.

60



Unit 3

Probability Continuous Distributions

Objective

This course aims to teach the students about some continuous probability distributions
are normal distribution, gamma distribution, beta distribution, Cauchy and laplace

distributions, multinomial distribution and compound distributions.

3.1 Normal Distribution

In this section we discuss the probability continuous distributions. We know that the

formulas;

1 for0<y<1
Fi(y) = fily) =

0 for the remaining y
In the examples we have often considered random variables with normal distributions.
We now investigate the general form of the normal distribution.

Definition 3.1.1 The random variable X has a normal distribution if its density function

is given by the formula

1 (x —m)?
_ _\&mmy 1
/(@) oV 2w P ( 202 ) .1
where o > 0. We first verify that (3.1) is a density. To see this let us denote
y_som (3.2)
g



We obtain

fly) = \/LQ—WMQ/ 2 (3.3)

Since the function f(y) given by (3.3) is a density, we have the equation

1 +oo _ 2 1 +oo
/ exp (—M) dx = —/ eV Pdy =1
oVvV21 J s 20 V21 ) oo

The characteristic function ¢(¢) of the random variable Y has already been obtained in

example we have ¢(t) = e t/2, Using equations (2.14), (2.15), and (3.2), we obtain

the expression

¢1(t) = exp (itm — %02252) (3.4)

for the characteristic function of X. From (3.4) and (32.4) we obtain the moments
mi=m, me=0>+m> =0 (3.5)

As we can see from equalities (3.5), the constants m and ¢ which appear in (3.1) may
be easily interpreted; m is the expected value of X and o is its standard deviation. The
shape of the curve of the density of the normal distribution depends on the parameter
0. The normal curve is representing three normal distributions with the same expected
value m = 0 and different standard deviations: ¢ = 1,0 = 0.5 and o = 0.25. The
normal distribution with expected value m and standard deviation o is often denoted
by N(m;o). By the symmetry of the normal curve with respect to the expected value

m all the central moments of odd order vanish,
pops1 =0 for every k (3.6)
It can be easily shown that
o =1-3-...-(2k — 1)o®* (3.7)
Formula (2.13) is a particular case of formula (3.7) for 0 = 1. There are very exact
tables of the normal distribution which are used in computation. Usually we are
interested in the probability that the random variable X with a normal distribution
differs in absolute value from the expected value m = F(X) by more than Ao (A > 0),

that is, more than a given multiple of the standard deviation. We find this probability,
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expressed as a function of ), in the tables of the normal distribution giving the value

of the integral
2 2
P(IX —m|>\o) = — —v2q
(X =l > 30) = —= [Py

In fact,
X —m]|

P(|X—m|>)\0):P( >)\):P(|Y|>)\)

where Y = (X — m)/o. We may also ask for the probability that X exceeds the
expected value by more than a given multiple of the standard deviation Ao, that is, the
probability P(X > m + Ao). We have

I
P(X >m+ A :PY>>\:—/ v2q
(X > mtdo) = PV >0 = —— | Py
Example 3.1.2 The random variable X has the distribution N (1;2). Find the probability
1

that X is greater than 3 in absolute value. Let us introduce the standardized random
variable Y = (X — 1)/2. We have
3
P(|X| > 3) = P(]2Y + 1| > 3) :P(‘YJFQ > 5)

13 1 3
—P(Y+-<-2)+P(v+->2
( T 2)+ ( +2>2>

By definition of Y, we have

P(Y < =2)+ P(Y > 1)

1 —2 1 +oo
P(Y. < —2) = E/ e 2t = \/7/2 e 2dt =~ 0.023

1 +o00
P(Y >1)= E/ e "/2dt =~ 0.159
1

The values of these integrals are obtained from tables of the normal distribution. Finally,
we have
P(|X]| > 3) = 0.182

From tables of the normal distribution we see that, for a random variable X with the
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normal distribution N (m; o), the following equalities are satisfied:

P(|X —m| > 0) 2 0.3173
P(|X —m| > 20) = 0.0455

P(|X —m| > 30) = 0.0027

We see thus that the normal distribution is highly concentrated around its expected value.
The probability that the value of X differs from the expected value by more than 3o is
smaller than 0.01 . This property of the normal distribution has led mdny statisticians to
apply the three-sigma rule, according to which for an arbitrary distribution there is small
probability that the random variable differs from the expected value by more than 3o.
This rule should be applied very carefully. In fact, from the Chebyshev inequality follows

only the fact that for an arbitrary random variable X whose variance exists

P(IX —m| > 30) <

O

The three-sigma rule can be applied only to distributions which do not differ much from
the normal distribution. Thus they must be almost symmetric distributions, having
only one maximum point in the neighborhood of the center of symmetry. The addition
theorem also holds for the normal distribution. Let X and Y be two independent random
variables, and let X have the distribution N (my;01) and Y the distribution N (ms; 03).

The respective characteristic functions of these distributions are

1
¢1(t> = exXp (mlzt — itQU%)

1
¢o(t) = exp (mgit - 575203)

Because of the independence of X and Y, the random variable Z = X + Y has the

characteristic function
S S A
o(t) = exp [ (my + mg) it — 5 (01 + 02) t (3.8)

Expression (3.8) is the characteristic function of the normal distribution N (ml + mo; Vo2 + 022),

which was to be proved. Cramér proved that the converse theorem is also true: if X; and
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X, are independent and the random variable X = X; + X, has a normal distribution,
then each of the random variables X, and X, has a normal distribution. Crameér’s
theorem is true for an arbitrary finite number of independent random variables. Besides
Cramer’s theorem, many others are known which characterize the normal distribution.
We present here the theorem of Skitowitch. Let X, ..., X,, be independent and have the
same nondegenerate distribution. Then the independence of the random variables L, and
L, defined by
Li=a: X4+ ...+ a,X,

L2:b1X1++ann

with 377 a;b; = 0and > 7, (a;b;)* # 0, is a necessary and sufficient condition for the
distributions of the random variables X1, ..., X, to be normal. For n = 2 this theorem

has been proved by Bernstein, Darmois, and Gnedenko.

Let Us Sum Up

Learners, in this section we have seen that definition of normal distribution and also

given theorems and Illustrations.

Check Your Progress

1. What is the shape of the probability density function pdf of a normal distribution?
A. Symmetric bell curve

B. Skewed to the right

C. Skewed to the left

D. Uniform

2. What is the total area under the probability density function pdf of a normal
distribution?

Al

B. V21

C.o

D. o2
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3.2 Gamma Distribution

The normal distribution is of great importance in probability theory and statistics. In
nature and technology we very often deal with distributions that are close to normal.
This phenomenon is an object of investigation of the theory of stochastic processes.
Moreover, under rather general assumptions the normal distribution is the limiting
distribution for sums of independent random variables when the number of terms
increases to infinity. This question is discussed in the next chapter. In applications we
often use a distribution associated with the gamma function, defined for p > 0 by the

formula -
I(p) = / P e dx 3.1)
0

It is known that integral (3.1) is uniformly convergent with respect to p and thus I'(p)

is a continuous function. Integrating (3.1) by parts, we obtain
Flp+1) = / aPe dr = [—e 3] —|—p/ e dx
0 0

Hence (3.2)
[(p+1) =pl(p)

In particular, if p = n, where n is an integer, we obtain from (3.2)

I'(n+1)=nl(n)

I'(n)=(n—-1)I(n-1) (3.3)

Since

we obtain from equalities (3.3)
I'n+1)=n! 3.4)

Substituting y = z/a(a > 0) in (3.1), we have

F(p) — /OO ypflefaydy (35)
0



Equation (3.5) is also valid when « is a complex number a = b + ic, where b > 0. We
shall not give the proof of (3.5) for this case. Let X be a random variable with the
density defined by the formula

0 forz <0
flz) = (3.6)

P p—1,-bx
e forz >0

where b > 0 and p > 0. The fact that (3.6) defines a density follows directly from

(3.5), since
+o0 +oo
flado = |
—00 0

and f(x) is a non-negative function.

P ey =1
['(p)

Definition 3.2.1 If a random variable X has the density given by (3.6) we shall say that
X has a gamma distribution is represents such a density for p = 1 and b = 0.5. We now
find the characteristic function of this distribution. We have

too o e ,
o(t) = / e f(z)dx = m/ aP e b=t gy 3.7)
—00 0

Since, as has already been stated, equation (3.5) is valid whena = b+ icand b > 0,

then o . o) ) . o
o(t) = T(p) (b—it)yy (1—it/b) 38

The function ¢(¢) can be differentiated an arbitrary number of times. Its k th derivative

is expressed by the formula

p(p+1)...(p+k:—1)ik 1
bk (1 — 4t /b)ptk

o™ (t) = fork=1,2,...

From (2.4) we obtain

my = — = 3.9)

In particular, we have,

my =

p p(p+1) p
X Mo = TR Uo = »2 (3.10)

Example 3.2.2 The random variable X has the gamma distribution with the density
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given by the formula

0 for <0

fz) =

2¢ 2% for x>0
The reader may verify that if we substitute p = 1 and b = 2 in (3.6) we obtain the
distribution considered in this example. What is the probability that X is not smaller
than two?, We have

P(X >2)= 2/ e Pdr = — [e7*]) = e =£0.0183
2

In more complicated cases we can make use of the tables by K. Pearson to compute

probabilities of the gamma distribution. The probability distribution considered in example

is a particular case of the exponential distribution.

Definition 3.2.3 The random variable with density f(x), defined by the formula

0 forz <0
flz) = (3.11)
e forz >0

where \ > 0, has an exponential distribution. We now show that the addition theorem
is valid for random variables with gamma distributions. Let X; and X, be two independent
random variables with gamma distributions and with the respective characteristic

functions
1

br(t) = W (k=1,2)

Let Us Sum Up

Learners, in this section we have seen that definition of gamma distribution and also

given theorems and Illustrations.

Check Your Progress

1. What are the two parameters of the gamma distribution?
A. Hape parameter (o) and scale parameter (5)

B. Mean (u) and standard deviation (o)
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C. Rate parameter (\) and variance (0?)

D. Mean (1) and variance (02)

2. Which of the following distributions is a special case of the gamma distribution with
integer shape parameter «?

A. Normal distribution

B. Poisson distribution

C. Uniform distribution

D. Chi-squared distribution

3.3 Beta Distribution

Consider the sum of these random variables, X = X + X5. From the independence of

X; and X, it follows that the characteristic function ¢(t) of X equals

| 1 1
A ey T (e i Ry T

We see that X also has the gamma distribution, which proves the theorem. Laha and
Lukacs have given theorems characterizing the gamma distribution. We mention here
the following quite simple theorem of Lukacs. Let the independent random variables
X and Y with nondegenerate distributions take on only positive values. Then X and
Y have the gamma distribution with the same parameter b if and only if the random
variables U and V, where ¥

U=X+4+Y, V=—
+ 7Y, v

are independent. In the applications we also deal with a distribution associated with

the function defined by the formula
1
B(p,q) = / P11 — 2)7 'dx, wherep>0,q>0 (3.12)
0

In the monograph of Saks and Zygmund the reader will find a proof of the following
equation connecting the function B(p, ¢) with the function I" defined by (3.13):

L'(p)L'(q)

19 3.13
L'(p+q) (3.13)

B(p,q) =

Definition 3.3.1 We say that the random variable X has a beta distribution if its density
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is given by the formula

P11 —2)t forO<z<1
fla) = 707 (3.14)

0 forr <0 and z2>1

where p > 0,¢ > 0. That the function f(x) given by (3.14) is a density follows from
formula (3.11) and the fact that it is non-negative. It is convenient to obtain the

moments of the beta distribution directly from the formula

L(p+q) i1 _ pya-lg, - L@+ @)

= )T <>/ o) = gy Btk (-19)
_Tl+l(p+k) pp+1)...(p+k—1)
S IT(p+q+k) (+dp+q+1)...(p+q+k—1)

In particular,

p p(p+1)
S = (3.15)
prg P (prg)prat )
o = Pq (3.16)

(r+q?*p+aq+1)

The density of the beta distribution with p = ¢ = 2.

Example 3.3.2 The random variable X has the beta distribution with p = q = 2; hence
its density f(y) has the form

0 for y<0andy>1
fly) =

—r/(;(ffz(z)y(l —y)=6y(l—y) for O0<y<l1

What is the probability that X is not greater than 0.2?, We have

0.2 yg y3 0.2
P(Y €£0.2) = 6/ y(1 —y)dy =6 {— — —} =0.104
0 2 31

For computing the probabilities of the beta distribution we can use Pearson’s tables [4].

Definition 3.3.3 The random variable X has a Cauchy distribution if its density is given
by the formula is;
A

1
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The function f(x) is non-negative. By substituting

pr— -1
y N (3.18)

we obtain

+oo 1 +o0o dy 1
— — +oo _
N f(a:)da:—;/_oo T+ 42 —;[arctany]_oo—l

To find the characteristic function of the random variable X let us first find the characteristic
function of the random variable Y which is the linear transformation of X given by
(3.2). Thus Y has the density

1
fly)=— = (3.19)
and the characteristic function
o(t) = ! /+Oo w1 (3.20)
= - e 1542 Y .
To find ¢(t) consider first the density
1
hily) = 5e ] (3.21)

The reader may verify that expression (3.10) is a density. The characteristic function

of the random variable with the density (3.10) is

+oo 1 +o0
o1(t) = —/ et Wldy = 5/ (costy + isinty)e Yy

:/ costye Ydy
0

Integrating by parts, we obtain

/ costye Ydy = [—e’y cos ty]go — t/ sin tye Ydy
0 0

=1- t/ sintye™ Ydy
0
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Similarly,
/ sintye Ydy = [—e_y sin ty] go +t / e Y costydy
0 0

= t/ e Y costydy
0

Hence we obtain
[e.e] o0
/ e Yeostydy =1 — t2 / e Y costydy
0 0

Finally we have
1

- .22
1+1¢2 (3.22)

o1(t) = / e Y costydy =
0

The characteristic function (3.17) is absolutely integrable over the interval (—oo, +00);

by (3.6) its corresponding density is

L[ 3.23
= — t .
Oy (3.29

From (3.5) we obtain

+oo [ —it
oIl — l/ o
7 ) o 1+1¢2

o0

Changing ¢~ into ¢ under the integral sign (this does not affect the value of the

integral) and changing the roles of ¢ and y, we obtain

1 “+o00 eity
= 2 ——d 3.2
e 7T/_OO 542 y (3.24)

The right-hand side of (3.8) is identical with that of (3.4); thus we finally obtain
o(t) =e " (3.25)

Since X is a linear transformation of Y, for the characteristic function ¢,(¢) of X we

obtain the formula
@a(t) = exp(ipt — Alt[) (3.26)

Since, as can easily be seen, the function ¢.(¢) is not differentiable at ¢ = 0, none of
the moments of the Cauchy distribution exist. The addition theorem is valid for the
Cauchy distribution. In fact, let X; and X5 be two independent random variables with
densities g, (z) = %m, go(z) = %m (A1, A2 > 0). The function ¢(t)
can be differentiated an arbitrary number of times. Its k th derivative is expressed by
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the formula is;

p+1) ... (p+k—1), 1

p(
¢(k) (t) = o ] (1 — it /byre*

fork=1,2,...

From (2.4) we obtain

oW (0) _plp+1)...(p+k—1)

7 - (3.27)

mp =

In particular, we have,

po . _pptl) P
bv 2 b2 ) M2 b2

my = (3.28)
Example 3.3.4 The random variable X has the gamma distribution with the density

given by the formula

0 for <0

fz) =

2¢ %% for x>0
The reader may verify that if we substitute p = 1 and b = 2 in (3.6) we obtain the
distribution considered in this example. What is the probability that X is not smaller
than two?, We have

P(X >2) = 2/ e dy = —[e7]) = e 2 0.0183
2

In more complicated cases we can make use of the tables by K. Pearson to compute

probabilities of the gamma distribution. The probability distribution considered in example

is a particular case of the exponential distribution.

Definition 3.3.5 The random variable with density f(x), defined by the formula

0 for x <0
flz) = (3.29)
Xe ™ forx >0

where A > 0, has an exponential distribution. We now show that the addition theorem is

valid for random variables with gamma distributions. Let X, and X5 be two independent

73



random variables with gamma distributions and with the respective characteristic functions

1

(k=1,2)

Let Us Sum Up

Learners, in this section we have seen that the definition of Beta distributionand also

given theorems and Illustrations.

Check Your Progress

. What are the two shape parameters of the beta distribution?
.aand
.pand o
.Aand ¢
.aand A

. What is the mean of a beta distribution with shape parameters o and 3?

B

" otB

a+f
a

_a
Ca+p

o

B

U0 ®mpENdTOw > =

3.4 Multinomial Distribution

Let us consider the following generalized Bernoulli scheme. We perform n random
experiments. As a result of each experiment one of the pairwise exclusive events
A;j(j =1,2,...,r,r + 1) occurs. Let p; = P (A;), where p; + ... +p, + p,1 = L
The results of the n experiments are independent. Consider the random variable (
Xi,..., X, X;41 ), where X; = k; means that event A; has occurred k; times, k; =
0,1,...,n.

P(Xl == k’l, .o ,XT == kr, er+1 == k’r+1) (330)

n! k Ky kri1
=1 ... P
il k! s
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where ky + ... + k. + k.1 = n. This formula gives us the probability that A; occurs
k, times, A, occurs ko times, ..., A, 1 occurs k,,; times. We notice that the random
variables X1, ..., X,, X, satisfy the linear relation X; + ... + X, + X,.; = n. Let us
express one of the random variables, say X, , in terms of the remaining ones, that is,

X,41=n—X;...— X,. Then formula (3.1) can be written in the form

n!

k1 k- n—K
Il kl(n— KPP

P(Xi=ki,.... X, = k)=

where K =k +...+k.,andg=1—p; — ... — p,.

Definition 3.4.1 The random variable (X1, ..., X,) with the probability function given

by formula (3.1) is said to have a multinomial distribution.

Let (YI(I),YQ(I), . ,Yr(l)> and (5/1(2),3/2(2), . ,%(2)> be two random variables. Addition
of two multidimensional random variables will be understood in the vector sense, that
is, we say that the random variable (X, X», ..., X,) is the sum of the random variables
<Y1(1), Yz(l), e ,Yr(l)) and (Yl(Q), }/2(2), e ,K(2)>, and we write

(X1, Xoy .., X})

Il
VRS
S
=
S
=
l~<
=
SN—
_l’_
R
iny
©
S
S
~
©
S
N—

if X; = Yj(l) + Yj@)(j = 1,2,...,7). Now let (K(m),YQ(m),...,E(m)>, where m =

1,2,...,n, be independent random vectors with the same distribution, having at most
one coordinate different from zero, where form =1,...,nand j =1,2,...,r
(m) (m)
P(Yj :1):pj, P(Yj :0):1—1)]- (3.31)
P(Yl(m):O,...,Y;,(m):O =q=1—p1—...—p»

Let Us Sum Up

Learners, in this section we have seen that definition of Multinomial Distribution and

also given theorems and examples.
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Check Your Progress

1. What is the multinomial distribution a generalization?
A. Binomial distribution

B. Poisson distribution

C. Uniform distribution

D. Normal distribution

2. What is the mean of X; in a multinomial distribution with parameters n and
probabilities p1, po, ..., px?

A.n(1—p;)

B. np;

C.pi

D.n

3.5 Compound Distributions

It is easy to verify that the random variable (X, X5, ..., X, ) with a multinomial distribution

satisfies the relation

(X1, X, X,) = (Yl(m),YQ(m),...,Y(m))

By (2.1) we find that the characteristic function ¢,, (t1, ts, . .., t,) of (Yl(m), Y;m), e YT(m)> ,

form=1,2,...,n,is of the form
.
gbm (tl,tQ, e 7t7,) e ijeltj + q
=1

Hence, the characteristic function ¢ (¢1,ts,...,t,.) of (X, Xs,...,X,) we obtain the

formula .
gb(tltha"’?tT) - H¢m (t17t27"'7t7”) - <ij€’btj+q) (332)
m=1 j=1
From the last formula and from formulas analogous to (2.8) we obtain for j = 1,2,...,r

E(X;) =np;, \j= D? (X;) =np; (1 —pj) (3.33)
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and for j,k=1,2,...,rand j # k

Nk = E[(X; —npj) (X — npr)] = —np;p (3.34)
In applications we often deal with a random variable X whose distribution depends
on a parameter « which is a random variable with a specified distribution. Then, we
say that the random variable X has a compound distribution. We shall investigate
more closely two compound distributions, namely, a compound binomial distribution
and a compound Poisson distribution. Let the random variables X, (k = 1,2,...) be
independent and have the zero-one distribution defined by the probabilities P (X = 1) =

pand P (X = 0) = 1 — p. Consider the random variable X = X; + X5 + ... +Xy. For
a fixed N, X has the binomial distribution

P(X =3s)= (J:)ps(l —p)N* (s=0,1,...,N) (3.35)

P(N =n)=—e¢ (n=0,1,2,...) (3.36)

As we see, here N plays the role of the parameter o« mentioned previously. Consider

the two-dimensional random variable (X, N). We have
P(X=s,N=n)=P(X=s|N=n)P(N=n)

We are interested in the probability of the event X = s for every s; in other words, we

want to find the marginal distribution of X. This distribution is given by the formula

P(X:s):iP(X:ﬂN:n)P(N:n) (s=0,1,2,...)
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Considering (3.1), (3.2), and the fact that (") = 0 for n < s, we obtain

= A" (n
P(X =s) = Z e*Am (S)ps(l —p)"* (3.37)
n=0 ’
PN A=) e A=)t
sl = (n—s) sl = (n—ys)
B e—)\psAse)\(lip) B e—Ap()\p)s
sl B s!

We have obtained the Poisson distribution with expected value equal to pA. This

distribution is called a compound binomial distribution.

Example 3.5.1 The probability that a newborn baby will be a boy is p = 0.517. The
number X of boys in a family with N children (N constant) is a random variable with

the binomial distribution
N _
f%¥:$=( )ww%o&ys (s=0,1,...,N)
S

We might want the probability that X = s for all possible values of N, that is, the
probability that there will be s boys in a family with an arbitrary number of children. Here
N is a random variable with a certain distribution which can be determined empirically
for a given population by establishing the fraction of families with no children, with
one child, and so on. If we know the distribution of N, we can calculate the probability
P(X = s) for every s in a manner similar to the derivation of (3.3). We now investigate a
compound Poisson distribution. Let the random variable X have the Poisson distribution
given by the formula .

A" a

P(X =k)=—e"

- (k=0,1,2,...) (3.38)

and let A be a random variable of the continuous type with the density

%A”‘le““ for A >0

f(A) = (3.39)

0 for A <0

where v > 0,a > 0. Now consider the two-dimensional random variable (X, )\). Here

one of the random variables is discrete and the other is continuous. For every h > 0 and
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A1 > 0 we have

P(X=kM<A< AN +h)=
PX=kE|MSA<M+A)PMSA< AN+

Let us divide both sides of this equality by h and pass to the limit as h — 0. From (3.8)

and (3.5) we obtain limy,_,o P (X = k,A\ S A<\ +h) = Ak—llje_*l F‘EZ) NU—lemads,

3.5.1 Two-Dimensional Distribution

Determines the two-dimensional distribution of (X, \). Writing on the right-hand side

of (3.7) X in place of \;, we obtain the marginal distribution of X from the formula

P(X =k) = / TN A ey
o kB T(w)
From (3.5) we obtain
a? 00 )\k+v7167(a+1))\ a® 1 F(kﬁ—l—’l))
P(X =k)= A= —— — ——— 3.40
(X =k =1 /0 K T) * lat 1) (3.40)
o a o+l (v+k—1)
\l+4a (14 a)*k!

For simplicity in notation we generalize the symbol ("), which has been used only for

positive integer values of n. For every x and every positive integer » we denote

rl rl

(x) se—1). (w—r+1) a0

Further, let p = 1/(1 +a) and ¢ = 1 — p = a/(1 + a). By assumption, we have a > 0,
and hence the inequalities 0 < p < 1 and 0 < ¢ < 1. Using this notation, we can write
(3.7) in the form

P(X = k) = (—1)F (_”)pkqv (k=0,1,2,...) (3.41)

Definition 3.5.2 The compound Poisson distribution whose probability function is defined

by formula (3.41), is called the negative binomial distribution. Let us compute the
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characteristic function of this distribution.

we obtain
o(t) =q" (1 —pe)™" (3.42)

’ 7" 2
It follows that m, = @ =vl, my= ¢i§0) — <Iz) v(v +1) + 2o,

r—l
For the ordinary moment of order r we obtain the formula m, = >} (—1)"~" (" <§> (=)

(r=1,2,...). Greenwood and Yule gave some examples of applications of the negative

binomial distribution, of which one follows.

Example 3.5.3 The number of accidents among 414 machine operators was investigated
for three successive months. The data are presented in Table. The symbol k in the first

column denotes the number of accidents which happened.

Table

Observed k Frequency Probability
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0 0.715 0.722
1 0.179 0.167

2 0.063 0.063
3 0.019 0.027
4 0.010 0.012
5 0.010 0.005
6 0.002
7 0.000
8 0.002

to the same operator during the period under investigation. In the second column
are given the observed frequencies for the operators who had & accidents in the
period under investigation, and in the third column, the corresponding probabilities
calculated from formula (3.8). The unknown parameters v and p appearing in this
formula were found in the following way: the expected value and the variance of
the observed distribution were computed, and then it was assumed that they coincide
with the values of F(X) and u, defined by (3.10). In this way two equations were
obtained which make it possible to determine the unknown parameters. As we see,
the observed frequencies differ little from the computed probabilities. This can be
explained as follows. The probability that a machine operator will have k accidents
during the period under investigation is determined by the Poisson distribution with
parameter \. The value of this parameter is influenced by many factors depending
on time, such as the extent of the protective measures taken and the atmospheric
conditions. We can regard A as a random variable. Assuming that A has a gamma
distribution, it has been established that the observed and predicted frequencies are

close to each other.

Definition 3.5.4 The distribution of a random variable X given by (3.8), where v is an
integer; is called the Pascal distribution. This distribution can also be obtained from other
considerations, not as a compound but as a simple distribution. Consider a sequence of
experiments. Suppose that as a result of an experiment either the event A or the event
A may occur, and suppose that the results of the experiments are independent. We say
there is a success if the event A occurs, and a failure if not. Suppose that P(A) = p; thus

P(A) =1 — p = q. Denote by X, the number of successes following the (r — 1) th failure

and preceding the r th failure. Thus, for instance, X is the number of successive successes
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preceding the first failure, X, the number of successive successes after the first failure and
before the second failure. Let us consider the random variable X = X; + X5 + ... + X,.
The event X = k is the product of two events; the event that the (k + v) th experiment
will lead to a failure and the event that among the remaining k + v — 1 experiments k will

lead to successes. The probability of the first event is q and the probability of the second

kE+v—1\ 4, .1
(")

PIX = ) = (k—l—v—l)pk , v+l ... (v+k-=1), ,

is;

Hence

q = Ll pq

= (-1 (;:)p’“q” (k=0,1,2,...)

This formula is identical with (3.8). We now prove a theorem for the negative binomial
distribution, which is analogous to theorem for the binomial distribution. If the
equation

E(X):v]—):c

q
where ¢ is a positive constant, is satisfied for every v, then the probability function of
the negative binomial distribution tends to the corresponding function of the Poisson
distribution as v — oo.

Proof: From (3.8) we have

vio+1)...(v+k—=1) ,

Ulggo P(X =k)= vlggo 1 p"(1—p) (3.43)
k _ v —c .k
:c_hmv(v+1)...(v+k 1) L€ _ e
k! v—oo (v+c)k v+c k!

Formula (3.13) allows us to apply tables of the Poisson distribution to a negative

binomial distribution. Consider now the random variable Y defined by the formula

Y = Z X, (3.44)

where X;(k = 1,2,...) and N are random variables and N takes on only positive

integer values.

Theorem 3.5.5 Let the random variable N be independent of the random variables
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X1, Xo, ... If the inequality

> P(N = k)E (|X]) < 0 (3.45)

k=1

is satisfied, the expected value of the random variable Y exists and

E(Y)=> P(N > k)E(X;) (3.46)
k=1

Proof: From (3.14) and (3.22) we obtain

=N P(N=n)> E(Xy) =Y E(Xy)-Y P(N=n)

From (3.15) the theorem follows. Suppose in addition that the random variables X, have
the same distribution. Then, assumption (3.15) is satisfied if E(N) and the expected value
E(X) of X\, exist. Here, formula (3.16) has the form

E(Y)=E(X)Y P(N>k) =E(X)Y kP(N =k)=E(X)E(N) (3.48)
= k=1

k=1

The reader will notice that the expected value of the compound binomial distribution
satisfies relation (3.17).

Check Your Progress

1. What is a compound distribution?

A. A distribution resulting from combining two or more distributions

B. A distribution resulting from scaling a single distribution

C. A distribution resulting from shifting a single distribution

D. A distribution resulting from adding two or more identical distributions

2. Which of the following distributions can be used to model the number of successes
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in a sequence of independent Bernoulli trials with a random number of trials?
A. Negative binomial distribution

B. Poisson distribution

C. Uniform distribution

D. Exponential distribution

Glossary

1. The F{(y) is pdf of normal distribution.
2. The ¢ is standard deviation of normal distribution.
3. The I'(p) is gamma distribution of p.

4. The p, is rth order moment of beta distribution.

3.6 LetUs Sum Up

Learners, in this section we have seen that definition of compound distribution and

two dimensional distribution with Illustrations.

3.7 Unit Summary

The third unit content on the normal distribution, gamma distribution, beta distribution,
cauchy distribution, laplace distributions, multinomial distribution and compound

distributions. Also given theorems and examples.

Self-Assessment Questions

Short Answers: (5 Marks)

1. Show that if the random variables X; and X, have zero-one distributions and

are uncorrelated, they are independent. (b) Check whether this property holds
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for all two-point random variables. The random variable X has the binomial

distribution given by (2.1). Let

(k=0,1,...,n—1)

. Prove that (a) the expressions A, — 1 and (n + 1)p — 1 — k are either both equal
to zero, both positive, or both negative. (b) P(X = k) takes on its maximum

value either at one point ky, which satisfies the inequality
m+1)p—1<ko<(n+1p

if (n + 1)p is not an integer, or at two points (n+ 1)p —1land (n+ 1)pif (n+ 1)p
is an integer. (c) for k > (n+ 1)p

k 1

n

> (1)) - (1)

3. Prove that

n

> (;)pm(l —p)"" = = 1)?(!71 i /Op =1 (1 — )" Pt

m=k

4. Prove that for arbitrary A\; > 0, A\, > 0, and non-negative integer k

T

Z ALk (A + Xo)"
Al

k
=0

Long Answers: (8 Marks)

1. If F(x) is the distribution function of a random variable X with the zero one

distribution. Find the distribution function of the random variable Y = F'(X).
(a) Do the same for a random variable X with the binomial distribution.

(b) Do the same when X has the Poisson distribution.
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2. The random variable X is said to have a log normal distribution if its density is

of the form

0
f@) =1 e { L=t @ <o)
(x < c)

where c is a constant. Find F(X) and D?*(X).

3. (a). Prove that for every x > 0

1 2 1 1
2 (2 ) < 1-(x) <
Nora (x a:3> (=)

—z2/2

1
e
T 2T

where ®(x) is the distribution function of the normal distribution N (0;1).

(b) Find the analogous inequality for x < 0.

Exercises

1. The random variables X;(i = 1, 2, 3) are independent and have the same distribution

N(0;1). Find the distribution function of the random variable Y = max; ;<3 | X;|-

2. Let X1, ..., X,, be independent and have the same distribution function F'(x) and

moments of arbitrary order. Let a4, ..., a, and by, ..., b, satisfy the relations

n n n ni
E:aj_E:bﬁE:a] _E:bj
i=1 =1 =1 i=1

where the sequence aq,...,a, is not a permutation of the sequence by, ...,b,.
The distribution function F'(z) is normal if and only if the random variables L,
and L, defined as

n

L1 = ZCLij,LQ = ijXj
j=1

j=1

have the same distribution.

3. Let Xy,..., X, be independent and have the same nondegenerate distribution
function F'(x). Let
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n n

U=Xi+...+ X0, V=) a.XX,

r=1 s=1
n n

By, = ZarmBQ = Zzars'
r=1 r=1 s=1
(@) If By # 0 and B, = 0, then F(z) is the normal distribution function if and
only if V' has constant regression (of the first type) on U, i.e., E(V | u) = E(V),
with probability 1.
(b) If E(V) = 0,B; # 0, and By # 0, then F(x) is the gamma distribution

function if and only if V' has constant regression on U.

Answers to Check Your Progress

Session (Modulo) 3.1

1. A. Symmetric bell curve

2.A.1

Session (Modulo) 3.2

1. A. hape parameter («) and scale parameter ()
2. D. Chi-squared distribution

Session (Modulo) 3.3

1.A.cvand g

2.C.355

Session (Modulo) 3.4

1. A.Binomial distribution

2. B. np;

Session (Modulo) 3.5

1. A. A distribution resulting from combining two or more distributions

2. A. Negative binomial distribution
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Unit 4

Limit Theorems

Objective

This course aims to teach the students about limit theorems of stochastic convergence,
Bernoulli’s law of large numbers with the convergence of a sequence of distribution
functions and Levy-Cramer theorem, De Moivre-Laplace theorem, Lindeberg-Levy theorem

and Lapunov theorem.

4.1 Stochastic Converges

In this section we discuss the modern theory of limit distributions for sums of independent
random variables has developed greatly during the last thirty years, due mainly to
Khintchin, Gnedenko, Kolmogorov, and Lévy. A uniform general theory has been
developed, in which the limit theorems presented in this section are only particular
cases of general theorems which give conditions for the convergence of a sequence of
distribution functions of sums (much more general than the sums considered here) to
a limit distribution function and establish the set of all possible limit distributions. The
reader will find a detailed discussion of this theory in the books by Lévy Gnedenko and
Kdlmogorov, and Loeve. The question of the convergence of a sequence of distribution
functions for dependent random variables is also extremely interesting. Investigations
in this domain were originated by Markov. Bernstein has obtained some important

results. Consider the following example.

89



Example 4.1.1 The random variable Y,, can take on the values

n—1

1 2
07_7_7"'a 71
nn

n

and its probability function is given by the formula

P(Yn:f)z(n>i (r=0,1,...,n) (4.1)

r

X, =Y, -+ 4.2)

Thus X,, can take on the values

1 2—n4—n n—4 n—21

2" 2n " 2n 77 2n 7 2n 72

The probability function of X, is given by the formula

(e 5)- ()2
2n r ) 2"

Let n = 2. The random variable X, can take on the values

~0.5,0,0.5

with the respective probabilities 1,1 1. Let e be a positive number, say e = 0.3. We see

that

1 1

Now let n = 5. The random variable X5 can take on the values
—0.5,-0.3,-0.1,0.1,0.3,0.5

with the respective probabilities

1 5 101 10 5 1

32732732 3732732
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Hence
P (| X5] > 0.3) = 0.0625

Now let n = 10. The random variable X, can take on the values

—0.5,—0.4,—0.3,—0.2, —0.1,0.0,0.1,0.2,0.3,0.4, 0.5

: : HEFESORETE | 10 45 120 210 252 210 120 45 10 —1
Wlth the respectlve prObabllltleS ]_m, 1024° 1024 10242 1024° 1024 1024° 1024° 1024° 1024° 1024° Hence

P (|X10| > 0.3) 2 0.02

We see that for n = 10 the probability that X/ will exceed ¢ = 0.3 in absolute value is

very small. From the theorem, it follows that in our example

le P(|X,|>03)=0 4.3)
and, moreover, that for the sequence of random variables X,, defined by formula (4.2),
relation (4.3) is satisfied for every ¢ > (. Before we present the theorem just mentioned,

we define the notion of stochastic convergence.

Definition 4.1.2 The sequence { X,,} of random variables is called stochastically convergent

L to zero if for every e > 0 the relation

lim P(|X,]>¢)=0 4.4)

n—o0

is satisfied. We notice that in this definition we say nothing about the convergence of
the random variables X,, to zero in the sense which is understood in analysis. Thus,
if the sequence {X,,} is stochastically convergent to zero, it does not follow that for
every ¢ > 0 we can find a finite ny such that for all n > n, the relation |X,| < ¢
will be satisfied. From the definition of stochastic convergence it follows only that the

probability of the event | X,,| > ¢ tends to zero as n — oc.

Theorem 4.1.3 Let F,,(x)(n = 1,2,...) be the distribution function of the random variable
X,. The sequence {X,} is stochastically convergent to zero if and only if the sequence
{F,(x)} satisfies the relation

0 forx<O
lim F,(z) = (6.2.5)

n—oo
1 forx >0
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Proof: Suppose that the sequence { X, } is stochastically convergent to zero. From relation

(4.4) it follows that for an arbitrary € > 0 as n — oo we have

P(X,<—¢)=F,(—<)—0 (4.6)

P(X,>e)=1—-F,(e) —P(X,=¢)—0

Since for every € > 0 we can find an e, such that 0 < ¢; < ¢, it follows from relation
(4.4) that for an arbitrary € > 0 we have P (X,, =€) — 0. Hence from (4.6) it follows
that

1—F,(e) =0 4.7)

Replacing ¢ by —x in formula (4.6) and by z in formula (4.7), where x > 0, we obtain
(4.5). Suppose now that (4.5) is satisfied. Then for arbitrary € > 0 we have

lim P (X, < —¢) = lim F,(—¢) =0

n—00 n—0o0
lim P(X,, >¢) < lim P(X,, >2¢)=lim [1 - F,(¢)] =0
n—o00 n—00 n—00
Relation (4.4) follows immediately from the last two relations, which proves the theorem.
We remind the reader that the random variable X with a one-point distribution such that
P(X = 0) = 1, has the distribution function

0 forx<0
F(z) = (4.8)

1 forx >0

and this distribution function is continuous at every point x # 0. From relations (4.6)
and (4.7) it follows that for every point x # 0 the sequence of distribution functions
F,(x) converges (in the usual sense) to the distribution function F(z) defined by formula
(4.8). We conclude that the sequence of distribution functions F,,(x) of random variables,
convergent stochastically to zero, converges to the distribution function of the one-point
distribution at every point x # 0. Since the points x # 0 are continuity points of this
distribution function, we can formulate the preceding result in the following way. The
sequence {X,} of random variables is stochastically convergent to zero if and only if the
sequence {F, (z)} of distribution functions of these random variables is convergent to the

distribution function F'(x) given by (4.8) at every continuity point of the latter. We stress
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the fact that at the point of discontinuity of F'(x), that is, at the point x = 0, the sequence
{F.(0)} may not converge to F'(0). We can also consider the stochastic convergence of a
sequence of random variables { X, } to a constant ¢ # 0. This will mean that the sequence
of random variables {Y,,} = {X,, — ¢} is stochastically convergent to zero. Similarly, we
can define the stochastic convergence of a sequence of random variables { X,,} to a random
variable X. This will mean that the sequence of random variables {Z,} = {X, — X}
is stochastically convergent to zero. We now prove the theorem stated in Section 6.2,
of which formula (4.3) is a particular case. Denote by {Y,,} the sequence of random

variables with probability functions given by the formula

T n
P (Yn _ —) _ ( )pm )T (4.9)
n T
where 0 < p < 1 and r can take on the values 0, 1,2, ..., n. Further denote
X,=Y,—p (4.10)

Theorem 4.1.4 The sequence of random variables {X,} given by (4.7) and (4.8) is

stochastically convergent to O, that is, for any € > 0 we hare

lim P (|X,| >¢) =0 (4.11)

n—o0

Proof: We shall use the Chebyshev inequality in the proof. By equalities (3.8) we have

E(X,)=0 (4.12)

on=D?2(X,) = p(l—p)/n (4.13)

Substituting (4.4) and (4.5) into the Chebyshev inequality, we obtain

P <|Xn| > k(1 —p)/n) < % (4.14)

where k is an arbitrary positive number. Set

k=ev/n/p(1-p)
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Let Us Sum Up

Learners, in this section we have seen that definition of limit theorems and stochastic

converges and also given theorems and with Illustrations.

Check Your Progress

1. Let {X,,} be a sequence of random variables. If X,, * X and X, 4 X (converges
in distribution), which of the following statements is true?

A. Convergence in probability implies convergence in distribution.

. Convergence in distribution implies convergence in probability.

. Convergence in probability implies almost sure convergence.

. Convergence in distribution implies almost sure convergence.

. If X, %5 X which of the following statements about X,, and X is true?

. X,, converges in L? if X,, &% X

X, B X

X, S X

. X,, converges in mean if X,, 2% X

OO w»bdbUonw

4.2 Convergence of A Sequence of Distribution Functions

The inequality (4.6). We then obtain the inequality

P(X,] >¢) < p%&;p) < nigz (4.15)
From inequality (4.15) it follows that for every ¢ > 0 we have (4.13), which was to
be proved. The theorem just proved is called the Bernoulli law of large numbers. This
law can be interpreted in practice as follows. We perform n experiments according
to the Bernoulli scheme, where the probability of the event A is equal to p. The law
of large numbers states that, for large values of n, the probability that the observed
frequency of A will differ little from p is close to one. In the following sections we
investigate other laws of large numbers. In Section 4.2 we considered a sequence

of distribution functions which converges to the distribution function (4.8) of the
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one-point distribution at every continuity point of this distribution. We now investigate

the question of convergence of sequences of distribution functions generally.

Definition 4.2.1 The sequence {F,,(x)} of distribution functions of the random variables
{X.,} is called convergent, if there exists a distribution function F'(zx) such that, at every
continuity point of F(x), the relation

lim F,(x) = F(x) (4.16)

n—o0

is satisfied. The distribution function F(x) is called the limit distribution function.
As we see, it is not required that the sequence {F,(x)} converge to F(z) at the
discontinuity points of F(z). The sequence {X,} of random variables defined by
formula (4.2) is stochastically convergent to zero; thus the sequence {F,,(x)} of their
distribution functions converges to the distribution function F'(z) defined by formula
(4.8). This distribution function is discontinuous at x = 0. It is easy to verify that
the sequence of numbers { F,,(0)} is not convergent to F'(0). Consider the subsequence
of the sequence {F,,(0)} containing only terms with the odd indices n = 2k + 1. The

random variable X5, ,; can take on the values

1 2—(2k+1) 4—(2k+1) 2k+1—-4 2k+1-2 1
27 202k+1) 7 22k+1) 777 2(2k4+1) 7 2(2k+1) 72

For every k, half of these terms are each less than zero, the other half greater than
zero. The probability that X, ; will take on a value less than zero equals 0.5 . Thus,
for every k we have P (Xo, 41 < 0) = For41(0) = 0.5 . Since F(0) = 0, we have

k—ro0

From (4.16) it follows that lim F,,(0) # F(0). Nevertheless, by the definition of
the convergence of a sequence of distribution functions, the sequence of distribution
functions of example 6.2.1 is convergent to the distribution function given by formula
(4.8). It is important to note that we speak about the convergence of a sequence
of distribution functions only when it is convergent to a distribution function. This
remark is important since it may happen that a sequence of distribution functions

converges to a function that is not a distribution function.

Example 4.2.2 Let us consider the sequence { X, } of random variables with the one-point

95



distributions given by the formula

The distribution function F,,(x) of X,, is of the form

0 forx<n
E,(z) =

1 forx>n

We have the relation

lim F,,(z) =0 (—o0 <z < o0)

n—oo
Thus the sequence {F,,(x)} is not convergent to a distribution function. Let the sequence

{F.(z)} be convergent to the distribution function F(x). Let a and b, where a < b, be two

arbitrary continuity points of the limit distribution function F'(x). Then we have

ILm P(a< X, <b)=F()— F(a) (4.17)
In fact,
P(a< X, <b)=F,) — F,(a) (4.18)

From the assumption that a and b are continuity points of the distribution function F(x)
it follows that
F.(b) —» F(b), F,(a)— F(a) (4.19)

From (4.18) and (4.19) follows (4.17). Let the sequence {F,(x)} be convergent to
the distribution function F(x). Let P,(S) and P(S) denote the probability functions
corresponding respectively to the distribution functions F,,(x) and F(x). It can be shown

that for an arbitrary Borel set S on the real line R such that P(SN R — S) = 0 (here A

denotes the closure of the set A ) we have the relation

lim P,(S) = P(S) (4.20)

n—o0

We observe that even when the limit distribution function is everywhere continuous, Borel
sets S may exist, for which (4.20) is not satisfied. This will happen if P(SN R — S) > 0.
The following example is due to Robbins.
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Example 4.2.3 The random variable X,,(n = 1,2,...) has the density f,(x) given by

T i <e<y (i=L...n)

0 otherwise

where 0 < € < 1. The distribution function F,(z) of X,, is then, fori = 1,..., n, of the

form
( 0 if <0
= if Sr<r<g- R
Fu(e)={ ity Zlomivain) (4.21)
1 fi-—t<z<i
\ ifr>1

Thus for every x in the interval I = [0, 1] we have

0<z—F,(z) <

S|

By considering the values taken by F,,(x) outside the interval I, we obtain for every real x

0 ifx
Jim B () =F(z) =92 ifo<z<1 (4.22)
1 ifx

Let us denote by S, the set on which f,(x) > 0, and by S, the Borel set defined as

Soo :iSn

Let P,(S) and P(S) denote the probability functions which correspond to the distribution
functions F,(z) and F(z), respectively. We have for n = 1,2, ...

P, (S,) = ; fo(z)dr =1
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Since S, > S, we obtain P, (S ) = 1; hence,

lim P, (Sy) =1

n—oo

On the other hand,

P(Soo):/soodxgi(n%> —c<1 (4.24)

n=1

thus
lim P, (Sx) # P (Sx)

n—oo

despite the fact that the distribution function F'(x) given by (4.22) is every where continuous.
This is because P (Soc N R — Sy) > 0. Indeed !, we have P (Sosn R — Sx) = P (S N1 — Sy),
and the set I — S, is perfect and nowhere dense in I; hence I — S,, = [ — S, and

I — (I —S+)= S = 1. Thus we obtain, using (4.24),
P(SenNT=8.)=P(INI—8.)=P(—Sx)=1—¢

We now give the generalization of definition to random vectors.

Definition 4.2.4 The sequence of distribution functions { F,, (x1, . .., xx)} of random vectors
(Xn1, Xn2, - - ., Xpk) is convergent if there exists a distribution function F (x, . .., xy) such
that at every one of its continuity points.

lim Fn (37175527---7371:) :F(l’1,$2,...,$k) (425)

n—oo

It is not difficult to show that if (6.25) holds, and P, (S) and P(S) denote the respective
probability functions, then for every Borel set in k-dimensional Euclidean space R*
such that P (S N m) = 0 relation (4.20) holds. This relation holds, in particular,
for continuity intervals. The following theorem has important applications. We present

it without proof.

Theorem 4.2.5 Let {F), (x1,...,2x)} (n = 1,2,...) be a sequence of distribution functions
of random vectors (X,1,...,X,x) and let F (z4,...,x;) and P(S) be the distribution
function and probability function of a random vector (X1, ..., X}), respectively. Relation
(6.25) holds if and only if for ! Information concerning the notions introduced here can

be found in this section.
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Let Us Sum Up

Learners, in this section we have seen that the definition of convergence of a sequence

of distribution functions and also given theorems and examples.

Check Your Progress

1. Which of the following is a necessary condition for the convergence of {F,,} to F'in

distribution?

Fo(z) =
Fu(z) —
Fo(z) —
Fo(r) —

. If {F,,} converges to F' uniformly, then {F,,} also converges is:

F(x) uniformly for all z € R.
F(x) at every point = € R.
F(z) at all continuity points of F.

F(z) for all = such that F' is not continuous.

. Almost surely to F'
. In probability to F’
. In distribution to F

Unw>wpppu;>

. In mean to F

4.3 The Riemann-Stieltjes Integral and Law of Large

Numbers

Every function g (z1, ..., ;) continuous on a set S satisfying the relation P(S) = 1,
the equality
lim H,(a) = H(«a)

n—o0

holds at every continuity point « of H(«), where H, («) and H(«) are the distribution
functions of g (X,,1, ..., X,) and g (X3, ..., Xi), respectively. In further considerations
we use the theorem proved by Levy and Cramér which makes it possible to investigate
the convergence of a sequence of distribution functions {F},(x)} of random variables
{X,} to a distribution function F'(z) by investigating the convergence of the sequence
of characteristic functions ¢, (t) of the random variables X,,. This theorem plays an
important role in probability theory. The proof of this theorem requires the notion

of the Riemann-Stieltjes integral, which for simplicity is called the Stieltjes integral.
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It will be seen that distributions of random variables of the continuous and discrete
types, considered separately, can be treated together by means of the Stieltjes integral.
We first introduce the notion of a function of bounded variation. Let F'(z) be a function
defined in the interval [a, b], which can be either finite or infinite. Let us take a partition

of the interval [a, b] with the points

a=To<T1<T2<...<x,=020

and form the sum

=

T = Y |F' (2pq1) — F ()]

£
Il

The value of 7" may depend, of course, on the number n and on the partition into

subintervals.

Definition 4.3.1 The least upper bound of the values of T is called the total absolute

variation of the function F(x) in the interval [a, b].

Definition 4.3.2 If the total absolute variation of the function F(x) in the interval [a, b]
is finite, we shall say that F is a function of bounded variation on the interval [a, b).
It is easy to verify that every nondecreasing bounded function is of bounded variation.
Indeed, here the expression F' (xy.1) — F (xy) is nonnegative for arbitrary k and arbitrary

partition of the interval [a, b], hence

i
L

T =3 [F (wi1) = F (2] = F(b) - Fla)

=
Il

and our assertion then follows from the assumption that F'(b) and F'(a) are finite. It also

follows that every distribution function F'(x).

Let Us Sum Up

Learners, in this section we have seen that the definition of Riemann-Stieltjes integral

and law of large numbers and also given theorems and examples.
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Check Your Progress

1. Which of the following conditions is necessary for the existence of the Riemann-Stieltjes
integral f; f(x)dg(x)?

A. f must be continuous on [a, b] and g must be of bounded variation on [a, b].
B. f must be integrable over [a, b] and g must be continuous on |[a, b].

C. f must be differentiable on [a, b] and g must be of bounded variation.

D. f must be continuous on [a, b] and ¢ must be differentiable on [a, b].

2. The formula for integration by parts in the Riemann-Stieltjes integral is:

A J! f(2)dg(x) = F(D)ab) — fla)gla) — [ g(x) df (x)

B. J, f<a:> <x> = f(a)g(b) - f(b)g(a> + [, g(x) df ()

C. 7 f(z) dg(x) = f(a < > - >g<a> — J? f(w) dg(x)

D. [} f(z)dg(z) = [}

)9
gz

f
Ja

4.4 Levy-Cramer Theorem

If Z=X/Y and P(Y = 0) = 0,

Fo) = [ 1= RGpldRe) + /0 " Fi(ey)dFy(y) (4.26)

We first present the Levy-Cramer theorem in the form of two theorems.

Theorem 4.4.1 If the sequence {F,,(x)} (n = 1,2,...) of distribution functions is convergent
to the distribution function F(x), then the corresponding sequence of characteristic functions
{¢n(t)} converges at every point t (—oo < t < +00) to the function ¢(t) which is the
characteristic function of the limit distribution function F(z), and the convergence to
¢(t) is uniform with respect to t in every finite interval on the t-axis.

Proof: From the definition of a characteristic function we have

On(t) = /Oo e dF,(z), o(t) = /Oo e dF (x)

o0 o0
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Let a < 0 and b > 0 be continuity points of the distribution function F(z). We have

a b 00
On(t) :/ e dF, () +/ e dF, () +/ e dF, () (4.27)
a b

—00

= 1In1 +[n2 +In5

o(t) = /_io e dF () + /ab e dF(z) + /boo e dF (z)

=L+ 1+ Is.

Consider the difference

b b
Io— 1L :/ e dF, () —/ e dF(z)

Integrating by parts, we obtain

b
Iy — I, =" {[Fn(x)]z — [F(aj)]Z} — it/ [Fo(z) — F(z)] "™ dx
hence
o = Bl < IBW0) ~ FO) + 1F@) ~ F@ + 1 [ V(o) = F@)lda

Let € > 0 be arbitrary. By the assumption of the theorem and by the fact that a and b are
continuity points of F'(x), we obtain, for sufficiently large n,

F(0) = FO)| < 5. |Fulo) = Fla)] <

Furthermore, by the Lebesgue theorem on passage to the limit under the integral sign by
the assumption of the theorem, and by the fact that |F,,(x) — F(x)| is uniformly bounded

in every interval, we obtain

b
lim/ Py )|dx—/ lim |F,(2) — F(z)|da
a n—oo

n—oo

Since the function under the integral sign on the right-hand side of the last formula

is equal to zero except at most at a countable number of points, the integral under
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consideration is equal to zero. Suppose now that t satisfies the inequality T) < t < T,
where 11 and T, are arbitrary fixed numbers, and let K be the greater of the numbers
|T1| and |T5|, that is, K = max (|T1],|7T%|). Then, for sufficiently large n and all t under

consideration, we have

t / \Fu(z) — F(2)| dz < K / Fu(z) — F(z)|dz < £

9
Thus we obtain

Lo — L] < % (4.28)

Now consider the difference

Io—1 :/ e dF, () —/ e dF (z)

— 00 — 00

We have . .
|11 — I| < / dF,(x) +/ dF (z) = F,(a) + F(a).

— 00 o0

Thus, if a is sufficiently large in absolute value, then, by the assumption of the theorem

and the continuity of F'(z) at a, we have, for sufficiently large n,

€ 5
F, -, F -
()<, Flo)<<
Hence for all t and sufficiently large n,
£
Iy — 1| < 3 (4.29)
Similarly, we obtain that
Ly — I| < % (4.30)

The theorem follows from formulas (4.27) to (4.30).

Theorem 4.4.2 If the sequence of characteristic functions {¢,(t)} converges at every
point t(—oo < t < +o00) to a function ¢(t) continuous in some interval |t| < 7, then
the sequence {F),(x)} of corresponding distribution functions converges to the distribution
function F(x) which corresponds to the characteristic function ¢(t).

Proof: In the proof we use the Helly theorem, which states that every sequence of distribution

functions {F,(x)} contains a subsequence {F,, (z)} convergent to some nondecreasing
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function F(x). The function F(x) can be changed at its discontinuity points so that it
becomes continuous from the left. It does not, however, follow from the Helly theorem
that F'(z) is a distribution function. Since F'(x) is the limit of distribution functions, we
have 0 < F(z) < 1, but we do not know whether F(—oc0) = 0 and F'(+o00) = 1. We show
that the last relations are satisfied. Suppose that

a = F(+00) — F(—) < 1 (4.31)

Since ¢, (t) — ¢(t) and ¢,(0) = 1, we have ¢(0) = 1. By the assumption that the function
¢(t) is continuous, it follows that in some neighborhood of the origin t = 0 it will differ

little from 1 ; thus for sufficiently small T we have the inequality

1
2T

/T cb(t)dt‘ > 1—g>a+g (4.32)

—T

where the number ¢ is chosen in such a way that a + ¢ < 1. Since the subsequence
{F,,(x)} converges to F(x), it follows from relation (4.31) that we can choose a > 4 /et
such that a and —a are continuity points of the limit distribution function, and a number
K such that for k > K

€
ap=F, (a) — F, (—a) < a+ 1

On the other hand, since ¢,,(t) — ¢(t), it follows from relation (4.32) that for sufficiently
large k the inequality

/ " b (t)dt‘ Sa+ s (4.33)

1
2T 2

is satisfied. We show that this inequality is not satisfied. Indeed, we have

_TT Gy, ()dt = /_: {/_:O emank(x)] dt = /_::o [/_: e“wdt} dF, (z)

Since |e"*| = 1, we obtain

’ / emdt‘ <27 (4.34)
Moreover,
T ite T 9 2 2
/ eteat] = || S— = —sintz| < — < —  for|z|>a (4.35)
- iw | | |z lz] a

Divide the whole axis into two parts, namely, into the interval |x| < a and the complement
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of this interval. We have

' /_ :O ( /_ emdt) dF, (z)
/u > < /_ 6“’”6”) dFy,, (z) /x . < /_ e“‘”dt) dF, (z)

Using inequality. (4.34) for |x| < a and inequality (4.35)) for |z| > a, we obtain

/_ b, (1)dt < ‘ /| . dF,, (z) /| . dF,, (z)
1

o+ —<mto<ats+i=ats
<« — < o - <a+-+-=a+ =
P ar TR T Y 44 9

< +

1
+ —
aT

1
o (4.36)

The last inequality contradicts inequality (4.33). Hence the function F'(x) is a distribution
function. From above theorem it follows that ¢(t) is its characteristic function. We now
prove that not only the subsequence {F,, (x)}, but the whole sequence {F,,(x)} converges
to F(x). If this were not so there would be another subsequence {F, ()} convergent to
a limit function F(z) different from F(x). The previous reasoning implies that F(z) is a
distribution function and from theorem it follows that ﬁ(az) has the same characteristic
function as F(x). Hence, by theorem, F(x) = F(x). Thus every subsequence of the
sequence {F,(z)} contains a subsequence convergent to the same distribution function
F(z); hence the sequence {F,(x)} converges to F'(x). From theorems a and 6.6.1b we

obtain immediately:

Theorem 4.4.3 Levy-Cramer: Let {X,} (n = 1,2,...) be a sequence of random variables
and let F,(x) and ¢,(t) be respectively the distribution function and the characteristic
function of X,,. Then the sequence {F, (x)} is convergent to a distribution function F(x)
if and only if the sequence {¢,(t)} is convergent at every point t(—oco < t < +00) to a
function ¢(t) continuous in some neighborhood |t| < T of the origin. The limit function
- ¢(t) is then the characteristic function of the limit distribution function F(x) and the
convergence ¢, (t) — ¢(t) is uniform in every finite interval on the t-axis. We observe that
theorem 4.1 remains true if we assume the continuity of the limit function ¢(t) only at the
point t = 0. We also observe that in the general case of theorem 4.1 we cannot replace the
convergence at every point t in the interval (—oo, +00) by convergence in some interval on
the t-axis containing the origin. If, however, all the random variables X,, are uniformly
bounded from above (or below), then for the sequence {F,(z)} of distribution functions
to converge to a distribution function F'(z), it is sufficient that in some interval |t| < T the

sequence {¢,(t)} is convergent to a function ¢(t) continuous at the origin. This theorem
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was proved by Zygmund. A We use theorem in proving the de Moivre-Laplace theorem.

Denote by {X,,} a sequence of random variables with the binomial distribution. For every

n the random variable X,, can take on the values 0,1, ... ,n and its probability function
is given by the formula
P(X,=r)= (ﬁ)prq"_r (4.37)

where 0 < p < 1and q = 1 — p. As we know from formulas (4.4), we have
E(X,) =np, D*(X,)=npq

Consider the sequence {Y,,} of standardized random variables

X, —np
Y, = — (4.38)
v/ 1pq

We shall prove a limit theorem called the de Moivre-Laplace theorem.

Theorem 4.4.4 Let {F,(y)} be the sequence of distribution functions of the random
variables Y, defined, where the X, have the binomial distribution given by formula
(4.37). If 0 < p < 1, then for every y we have the relation

1 Y 2
lim F,(y) = —— [ e¥/%d 4.39
lim Fy() == [ ey (4.39)
Proof: According to formula (3.3), the characteristic function ¢, (t) of X,, has the form

¢.(t) = (q+pe™)" (4.40)

Thus by equality (2.17) the characteristic function ¢,(t) of the random variable Y,, is
given by the formula

o-en( ) ()]

oo () v (Go))

Let us expand the function e¢'* in the neighborhood of z = 0 according to the Taylor
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formula for k terms with the remainder in the Peano form,

We obtain

qit + 't\/—/ qt2 i t2
ex = ? n———ro\|\—
Db exp Vo7 p pq on n

pit oy pt? N t2
exp | — =q—1 n——-+o|—
1P\ g ) pq o n

where for every t we have

t2
lim no (—) =0 (4.42)

n—oo n

Substituting these expressions in formula (4.41) and considering the fact that p+ q = 1,
t? 2\ 1"
) =|1-— —
o) = 1= 50 (%]

t? 2
log ¢, (t) = nlog [1 ~ o +o <E>] =nlog(1l+ z)

we obtain
Thus

We observe that for every fixed t for sufficiently large n, we have |z| < 1. Thus we can

write

2 2
log ¢, (t) = —% + no (%)

By (4.42) we obtain
t2

Jim log ¢, (t) = —5

Hence
lim ¢y (t) = e~/

n—o0

We have thus established that the sequence of characteristic functions ¢,(t) of the standardized
random variables Y, given by formula (4.38) onverges as n — oo to the characteristic
function of a random variable with a normal distribution whose distribution function is
given by the right-hand side of formula (4.39). By theorem 6.6.1b we immediately obtain
formula (4.39). We observe that the convergence in formula (4.39) holds for every v,
since the distribution function of the normal distribution has no discontinuity points. The

de Moivre-Laplace theorem is proved. Let y, and y, be two arbitrary points with y; < ys.
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From relation (4.39) it follows that

1 [,
lim P(y; <Y, <) = lim [F, —F, =— e V2 dy. 4.43
oo (yl y2) n—>oo[ <y2) (yl)] \/ﬂ " ) ( )

We shall rewrite the de Moivre-Laplace theorem in another form. By formula (4.38) we

have

X,—n
P(y1<Yn<y2)=P(y1<WqP<yg)

= P (y1/npq + np < X, < y21/npq + np)

Thus we obtain
' 1 v 2/
lim P (y1/npq +np < X, < yay/npq + np) = —/ eV dy
n—oo N 2T "

Let
Ty = Y1y/NPq +np, Ty = Yo/Npq + np (4.44)

We can write formula (4.43) in the asymptotic form

Y2 5
eV 2dy

1
V2 Jy,

P (1 < X,, < xq) &
where y; and y, are determined by (4.44). We say that the random variable X,, has an
asymptotically normal distribution N (np;/npq). Replacing y, and y, with

1
2./npq

Y1+ Yo —

1
2,/npq
respectively, we get a somewhat better approximation.

Example 4.4.5 We throw a coin n = 100 times. We assign the number 1 to the appearance
of heads and the number O to the appearance of tails. The probability of each of these
events is equal to p = ¢ = 0.5. What is the probability that heads will appear more than

50 times and less than 60 times?. The random variable X,, can here take on values from
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0 to 100. We have

E(X,) =50, D?(X,)=25
50 —50 X, —50 60—50)

< <
5 5 5
1 1.9 t2/2
<2 | —/ e " /edt
) V2 Joa

From tables of the normal distribution we obtain that the value of this integral is 0.4315.

P(50<Xn<60):P(

X —
:P(O<—5 0

From the de Moivre-Laplace limit theorem we obtain an analogous theorem for the sequence

of random variables

where X,, has the binomial distribution given by formula (4.37). Indeed, since E (U,) = p
and D? (U,)) = pq/n, we obtain the relation

Un_p_Xn_np_

S R

Y,

where the random variables Y,, are defined by formula (4.38). Since the sequence {F,,(y)}
of distribution functions of Y,, satisfies formula (4.39), we obtain for the sequence { F,,(z)}
of the distribution functions of Z,

lim F,(z 22

1 4
= — e
n—o0 ) V 27T /;oo
Similarly, for every pair of constants z; and z,, where z; < z,, we obtain the relation

1 2
nlgg()P (zl <+/n/pq (U, —p) < zz> = E/ e 2z (4.45)

Letting

uy = 21\/pg/n+p, us = z\/pg/n+p (4.46)

We can rewrite formula (4.45) in the asymptotic form
P(u; < U, <u)2L/226_22/2dz 4.47)
1 n 2) — /_271' Ny .

where z; and zy are determined. We say that the random variable U, satisfying relation
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(4.47) has an asymptotically normal distribution N(p;+/pq/n).

Let Us Sum Up

Learners, in this section we have seen that definition of Levy-Cramer theorem and also

given some theorems with Illustrations.

Check Your Progress

1. Levy’s Cramér theorem applies to:

A. Dependent random variables with finite variance.

B. Independent and identically distributed random variables with finite mean and
variance.

C. Independent and identically distributed random variables with finite mean only.

D. Dependent random variables with finite mean and variance.

2. The distribution of the sample mean X,, converges to a normal distribution according
to Lévy’s Cramér theorem if:

A. The variance of X is zero.

B. The moment-generating function of X; is finite for all ¢ € R.

C. The moment-generating function of X is finite for some interval |¢| < ¢,.

D. The random variables X; are not identically distributed.

4.5 Lindeberg-Levy Theorem

The Bernoulli law of large numbers, proved in allows us to state only that for every
¢ > 0 the probability of the inequality

X,
—"—p’>5
n

tends to zero as n — oo. The limit theorem, which we have just proved, allows us (for

large n ) to compute approximately the probability that the random variable X,,/n —p
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is contained in the interval

for arbitrary z; and z; (21 < 29).

Example 4.5.1 A box contains a collection of IBM cards corresponding to the workers
from some branch of industry. Of the workers 20% are minors and 80% adults. We select
one IBM card in a random way and mark the age given on this card. Before choosing
the next card, we return the first one to the box, so that the probability of selecting
the card corresponding to a minor remains 0.2 . We observe n cards in this manner.
What value should n have in order that the probability will be 0.95 that the frequency of
cards corresponding to minors lies between 0.18 and 0.22 ? Denote the frequency of the
appearance of the card corresponding to a minor by U,.. We then have

E(U,) =02, D?(U,) = %, D2 (U,) = 0;\/%

Consider the probability

002 U,—02  0.02
P(0.18 < U, < 0.22) :P( )

0.4/vn = 04/ 04/vn
U, —0.2
—p (—o.owﬁ < TV < o.owﬁ) ~ (.95

By formula (4.47) we obtain

0.05\/n

ol
27 J_0.05vn

0.95 = e /2dy

From tables of the normal distribution we obtain 0.05\/n = 1.96; consequently n =
1537. The De Moivre-Laplace theorem is, as we shall see later, a particular case of a
more general limit theorem, namely, the Lindeberg-Lévy theorem. Consider a sequence
{X:} (k=1,2,...) of equally distributed, independent random variables whose moment

of the second order exists. For every k denote

E(Xy)=m, D*(Xy)=o" (4.48)
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Consider the random variable Y,, defined by the formula

Y, =X +Xo+...+ X, (4.49)

We have E (Y,) = nm and, by the independence of the X,,

D?*(Y,) = no?®
Let v
W — mn
Ty = ——ovo— .50
o~ (4.50)

We shall prove the following theorem.

Theorem 4.5.2 If X, X,, ... are independent random variables with the same distribution,
whose standard deviation o # 0 exists, then the sequence { F},(z)} of distribution functions
of the random variables Z,, given by formulas (4.50) and (4.49), satisfies, for every z,
the equality

lim F,(z 224 (4.51)

-/
= — e
n—00 21 —o

Proof: Let us write equality (4.50) in the form

ZHZ%Z(Xk—m)

All the random variables X;, —m have the same distribution, hence the same characteristic
function ¢,(t). According to formulas (2.15) and (2.3) the characteristic function ¢, (t)

of Z, has the form
t n
z = x| — — .52
o= ()

We have assumed the existence of the first and second moments, and we have
E(X,—m)=0 and D?*(X;—m)=0o"

Hence we can expand the function ¢, (t) in a neighborhood of the point t = 0 according

to the MacLaurin formula as follows:

¢x(t) =1 — %Uth + 0 (%) (4.53)
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Substituting expression (4.53) in formula (4.52), we obtain

where for every t we have

t2
lim no (—) =0 (4.54)

Let

We obtain

log ¢ (t) = nlog(1+u) =n {—ﬁ To (ﬁ)} =5 o (ﬁ)

2n n

By relation (4.54) we obtain limlog ¢, (t) = —t*/2. Hence

. 2
The expression et /?

is the characteristic function of a random variable with the normal
distribution. By theorem 6.6.1b we obtain relation (4.51), which proves the theorem of
Lindeberg-Lévy. et z; and z3 be two arbitrary numbers with z; < zy. By relation (4.51)
we obtain

1

(6.8.8) lim P (21 < Zp < 29) = dim [Fo (22) — F (21)] = Nor: /Zl e %z, (4.55)

From formula (4.50) we obtain

Y, —nm
P < Lp < =P < — <
(=1 29) (zl o 22)

=P (zla\/ﬁ—i— nm <Y, < 20N + nm)

Thus, we obtain from formula (4.55)

1 %2 2
lim P (zio0v/n+nm <Y, < zov/n+nm :—/ e 2dz (4.56)
n—00 ( ! \/_ 2 \/_ ) vV 27 z1
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Let
Y1 = z10V/n +nm, Yo = 200/n +nm (4.57)

Now we can write formula (4.56) in the asymptotic form

1 =
P (yl <Y, < yg) = E/ G_ZQ/QdZ
21

where z; and z, are determined by relations (4.57). Thus the random variable Y,, defined
by formula (4.49) has an asymptotically normal distribution N(mn;o+/n). When a sum
of random variables has an asymptotically normal distribution, we say that it satisfies
the central limit theorem. Thus, for the sum Y, under consideration, the central limit
theorem holds.

Example 4.5.3 Suppose that the random variables { X} (k = 1,2,...) are independent

and each of them has the same two-point distribution, that is, for every k we have
P(Xy=1)=p, P(Xy=0=1-—p, where 0<p<lLl

Consider the random variable Y,, = X;+ Xs+...4+X,,. From the fact that E (X}) = p and
D? (X},) = pq, we obtain by theorem that Y,, has an asymptotically normal distribution
N (np; \/npq). Since the random variable Y,, has the binomial distribution, this example
is, strictly speaking, a new proof of the de Moivre-Laplace limit. theorem, which, as we

see, is a particular case of the Lindeberg-Lévy theorem.

Example 4.5.4 The random variables X,(n = 1,2,...) are independent and each of

them has the Poisson distribution given by the formula

Let us find the probability that the sum Yoo = X1 + X5 + ... + Xy is greater than 190
and less than 210. The random variable Yoy has approximately the normal distribution
N(100; 10v/2 ), since each of the random variables X, has standard deviation o = /2

and expected value m = 2. Thus we have

Y100 — 200
10v/2

P (190 < Yy99 < 210) = P (—0.707 < < 0.707)

From the normal distribution tables we find that the required probability is 0.52. From
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the Lindeberg-Levy theorem we obtain the following:

Theorem 4.5.5 Suppose that the random variables X1, X, ... are independent and have
the same distribution with standard deviation o # 0. Let the random variable U, be

defined by the formula
_ Xi+Xo+...+ X,

n

Un

Furthermore, let F,,(v) be the distribution function of the random variable V,, defined as

_ Un - F (Un)
/D (U,)

Then the sequence {F,,(v)} satisfies the relation
lim F,(v) = — [ e dv (4.58)

Proof: We have E (U,)) = m and D? (U,) = 02 /n. Hence

_ %ZZ:le—m _ > k1 Xi —mm _
o//n o\v/n

Va Zn
where the random variables Z,, are defined by formula (4.50). Since the sequence { F,,(2)}
satisfies relation (4.51), the sequence {F, (v)} satisfies (4.58). Now let v, and v, be two

arbitrary numbers with v; < vs.

1 V2 2
lim P(v; <V, <1vy) = — e V2 dy 4.59
. (v1 2) o /U1 (4.59)
Let
u1:%+m, mz%—km (4.60)

Formula (4.59) can be written in the asymptotic form

1 v2 2
P(u1<Un<u2)%\/T/ e U2 dy
T V1

where v, and v, are determined from relations (4.60). Thus the random variable U,
has an asymptotically normal distribution N(m;o/\/n). In other words, the arithmetic
mean of n independent random variables with the same, although arbitrary, distribution,

where it is only assumed that the moment of the second order exists, has, for large n, an

115



asymptotically normal distribution.
Example 4.5.6 The random variables X1, X,, ... are independent and have the uniform

distribution defined by the density

1 for x in the interval [0, 1]
fla) =

0 forx<Oandzx>1

By formulas (3.4) and (3.5) we have

Consider the random variable

X+ Xt X,

n

Y,

By theorem, the random variable Y, has the asymptotically normal distribution N (1;1/ \/ﬁn)
For n = 48 compute the probability that Y, will be smaller than 0.4 . We have !

y, — 1 0.4—1
}%n<0®:P( 2 2>

V576 1/v/576

n 2

Y,
- < . <-—z4);;¢(—24)g(umsz

24

As we see, although the random variables X (k = 1,2,...) have a uniform distribution
in the interval [0, 1], their arithmetic mean has, for large n, approximately a distribution

in which values that are less than m = 0.5 by more than 0.1 appear extremely rarely.

Example 4.5.7 The random variables X,(r = 1,2,...) are independent and have the
same distribution. Each of them can take on the values k = 0,1,2, ...,9 with the
probabilities P (X, = k) = 0.1 for every k. We have

10 &
1 < 1 <
2_D2(X) == (k=m)?= =3 k2 —m2 =28.50 — 20.25 = 8.25
o (X)) 1%2:0( m) me:O m



Thus o = 2.87. Consider the random variable

X1+X2+...—|—X100

Vi —
100 100

What is the probability that Yo will exceed 5?. By theorem we know that Yyqg has
approximately the normal distribution N(4.5;2.87/+/100.) We obtain

Yi00 — 4.5 5—45 Yi00 — 4.5
P(Y'100>5):P(100 > >:P(L>1_74>

0.287 0.287 0.287
~ 1 — $(1.74) 2 0.041

We now show by an example that the arithmetic mean of n random variables with the
same distribution may not have an asymptotically normal distribution, if their moment

of the second order does not exist.

Example 4.5.8 The random variables X;(k = 1,2,...) are independent and have the
Cauchy distribution given by formula (3.3). Since the characteristic function of X} has,
for every k, the form

br(t) = eIt

The distribution function of the normal distribution N(0;1) is denoted by ®(x). the

characteristic function ¢(t) of the random variable

X+ Xt X,
n

Y,

takes the form
(1) = emli/m — 1

Hence for an arbitrary n the random variable Y,, has the Cauchy distribution. Thus Y,
does not have an asymptotically normal distribution. We notice, however, that a random
variable with a Cauchy distribution does not have a standard deviation. Let the random
variables Xy (k = 1,2, ") satisfy the assumptions of theorem and let E (X};) = 0. Consider

for every n the partial sums

J
Si=> Xp (j=12...,n)
k=1
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Erdos and Kac|[1, 2] have found the limit distributions for the sequences of random variables

S; |5 1 = oo 1 <
{%%_n}’{g%}iﬁ 332 S 00 2 18]

j=1 j=1

These definitions began a series of fruitful investigations concerning the limit distributions
of a large class of functionals defined on the vectors (Si, ..., S,), even with much more
general assumptions concerning the random variables X, than those considered here.
In the preceding section we discussed the limit distribution of the sum of independent
random variables with the same distribution, and we established that if the variance
of these random variables exists, their sum has an asymptotically normal distribution.
However, the distribution of a sum of independent random variables may not converge
to the normal distribution if the terms do not have the same distribution, even if all the
random variables have standard deviations. We now prove the Lapunov theorem, which
gives a sufficient condition for a sum of independent random variables to have a limiting
normal distribution. Consider a sequence {X}} of independent random variables whose

moments of the third order exist.

Let Us Sum Up

Learners, in this section we have seen that definition of Lindeberg-Levy theorem with

examples.

Check Your Progress

1. Which of the following conditions is necessary for the Lindeberg-Levy Central Limit
Theorem to hold?

A. The random variables must be identically distributed.

B. The random variables must be independent.

C. The random variables must have finite mean and variance.

D. The random variables must be uniformly distributed.

2. In the context of the Lindeberg-Levy theorem, what does the notation Z, = S\’/l—;%’i
represent?

A. The sum of the random variables.

B. The standardized sum of the random variables.
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C. The variance of the sum of the random variables.

D. The mean of the sum of the random variables.

4.6 Lapunov -Theorem

Let {X,} (k =1,2,...) be a sequence of independent random variables whose moments
of the third order exist, and let my, o, # 0,ax, and b, denote the expected value,
standard deviation, central moment of the third order, and the absolute central moment

of the third order of X, respectively. Furthermore, let

If the relation

is satisfied, the sequence {F},(z)} of the distribution functions of the random variables
Z,, defined as

7, = L=t (gk — ) (4.61)

satisfies, for every z, the relation

1 # 2
lim F,(z) = — e *2dz (4.62)
n—00 (2) V2T e
Proof: Let
Xk — My
Y, =
k c.

Let ¢,, (t) denote the characteristic function of the random variable X, — my. From
the fact that F (X, —m;) = 0 and that the moments 0,2 and a;, exist, we obtain by

formula (1.2) the expansion of ¢,, (¢) into the sum

1 1
G (t) =1 — 50,3# + gak(zt)?’ + 0 (axt®)
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By formula (1.15), the characteristic function ¢,, (¢) of Y}, equals

t o2 t? ar . art?
on(0) = 6n, () = 1= TG+ o +o (25) = 1+

For every t we have

3 3
nlg{)lo [0 (aéi ) : Cgf—tg} = (4.63)

Since by the Lapunov inequality we have o, < /b, condition implies, for every t,

242 3 2 2
. —O0L t bk 2 . 1 Bn 2
< —_ = .
k23 ‘ 20,2 | Saac,st Sy et =Y #64)
Furthermore, we have
. Ak ,.,\3 . br 3 : Bn3|t|3
< < = .
m ’605; ()] < i Gasltl < im =5 =0 (4.65)

It follows from relations (4.64) and (4.65) that

lim U = 0

n—oo
and the convergence is uniform with respect to k. Hence for every ¢ there exists a
number N = N(¢) such that for n» > N and all k¥ < n we have the inequality |u;| < 3.
Thus

1 1
log ¢y, (t) = log (1 + uy,) :uk—§ui+§u2—...
1, 2 2, 1,
= Uk~ U 1—§uk—|—1uk—... = Uk~ ULV

We notice that

o] <1+ 2 Jug] + 2 Jug* + oo < 1+ Jug] + |ul® + ..

<l+i+31+...=2

Thus we can write
log ¢y, () = uy + Iy (4.66)
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where ¥, = —3u;, and 9| < 1. Denote by ¢.(t) the characteristic function of the

random variable Z,,. By formula (1.3), we have ¢, (t) = [[;_, ¢,,(t). Hence

log ¢-(t) Z 10g ¢y, (t)

By equality (4.66) we obtain

log . (1) = Y  (ux + Vyup) (4.67)
k=1
Next, we have
& 2 Kap(it)? & agt?
> up = -5+ scr T2\ ¢ (4.68)
k=1 k=1 k=1
We notice that for every ¢
: ay(it)° bt e
nh—>rgo Z 6C,3 < n—{& P 6C,3 nhj{}o 60 3 0. (4.69)

Hence, by formula (4.63) we obtain

. " akt3 . “ Clkt3 akt3 akt3
32%20(03)27};%;{603'[0(0—3 Gap)y " 470

k=1 n

From formula (4.68), because of formulas (4.69) and (4.70), it follows that for every

t we have

JI—E&ZU’“ = —— “4.71D)

We now find the limit of the sum

242 1\3 2
oLt ak(zt) at
Z“’f Z[ 20,2 T 60, +0(Cn3>]

k=1
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n—o0 £ n—>oo 4C 3 =0,
ak (it)3 2 at®
lim,, 00 Zk 1|76C3 :| < limy, 00 Zk 1|6C3
bi2t8 y B,,%t¢
nh—>noloz 3606 S M 3500 0

Taking formula (4.63) into consideration, we obtain

Similarly, we obtain

li U,%aji3t5
Ny 00 Z Z] k+1 ~6C,°

0

n—1 n 1202 a;t3 _
klZ] E+1 020<03 =0
) 0

-313 't3
lim art o (4
SN ) S S 5ca 0\ Z3

lim,, 00

From formulas (4.72) to (4.75) and the fact that for every &

obtain

n
hmE/%%:O
n—oo
k=1

(4.72)

(4.73)

(4.74)

(4.75)

< n we have |J;| < 1, we

(4.76)

Using (4.71) and (4.76) we obtain from formula (4.67) that for every ¢ the relation

holds. Hence

By the last relation and by theorem, we obtain formula (4.62), which proves the

Lapunov theorem. For another proof of Lapunov’s theorem. The Lapunov theorem

only gives a sufficient condition for relation (4.62). We shall now present without

proof the theorem of LindebergFeller, giving a necessary and sufficient condition. T
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Let Us Sum Up

Learners, in this section we have seen that definition of Lapunov theorem and also

given theorems and Illustrations.

Check Your Progress

. Lapinov’s theorem provides conditions under which:

. The sum of random variables converges to a Poisson distribution.

. The sum of random variables converges to a normal distribution.

. The sum of random variables converges to a uniform distribution.

. The sum of random variables does not converge to any distribution.

In Lapinov’s theorem, the moment-generating function M (¢) is bounded by:

2
eKt

eKt

2 .
. e where K is a constant.

et

OO0 wW>»NdMUOUOE >

4.7 Lindeberg-Feller Theorem

Let {X,} (k =1,2,...) be a sequence of independent random variables whose variances
exist, and let Gy(z), my, and o, # 0 denote, respectively, the distribution function,
the expected value and the standard deviation of the random variable X, and let
F,(z) denote the distribution function of the standardized random variable 7,, given
by formula (4.61). Then the relations

& o . o 1 ? 722/2
e, =0 e = [ e
hold if and only if, for every ¢ > 0,
2
nhir; 2 Z/ (x —my)" dGr(x) =0 (6.9.20)
n g1 |x—my|>eChp
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If all the X, are of the continuous type and g () is the density of X}, then condition
(4.77) takes the form

1 n
lim —— ) / (z — mp)? ge(x)dw = 0 (4.78)
n—o0 Cn 1 |z—my|>eCh

If, however, all the X, are of the discrete type with jump points x;; and jumps py (I =
1,2,...), formula (4.77) takes the form

1
nlgglo o Z Z (21— mp)’ pr = 0 (4.79)

" k=1 |zp—my|>eCpn

From the theorem of Lindeberg-Feller follows this theorem.

Theorem 4.7.1 Let { X} (k = 1,2,...) be a sequence of independent, uniformly bounded

random variables, that is, there exists a constant a > 0 such that for every k
P(| Xy <a)=1 (4.80)

and suppose that D* (X}) # 0 for every k. Then a necessary and sufficient condition for
relation (4.62) to hold is
lim C? = oo (4.81)

n—oo

Proof: Suppose that (4.81) is satisfied. From formula (4.80) it follows that the random
variables X}, — m,, are uniformly bounded. Hence for every ¢ > 0 we can find an N such
that for n > N we have

P(| Xy —mi| <eCpsk=1,2,...,n) =1

Formula (4.77) follows immediately. Suppose now that (4.62) holds, and (4.81) does
not. Then there exists a C' < oo such that lim C,,2 = C?. From the last relation, and from
formulas (4.62) and (4.61), it follows that -, (X — my, ) has the normal distribution
N(0;C). Let

U= (Xo—ma)+ (X3 —m3)+...

The random variables X, — m; and U are independent, and their sum has a normal
distribution. By the Cramér theorem both X; — m; and U have normal distributions.

However;, by hypothesis (4.80), the random variable X; — m, does not have a normal
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distribution. Hence (4.61) is not satisfied, and the theorem is proved. In particular, it
follows from this theorem that if the random variable Y,, = >, _, X}, has the generalized
binomial distribution, that is, if the probability function of X, is given by the formulas
P(Xy=1)=pp, P (X =0) =qp = 1—pir(k = 1,2,...), then the divergence of the series
Yprqr is a necessary and sufficient condition for Y to have the asymptotically normal

distribution
n n
¥ [ zpqu)
k=1 k=1

Example 4.7.2 At a construction site there are lots of bricks from five different factories.
Judging by previous experience, the quality of bricks from different factories differs and
the fraction of defective items is not the same for all lots. The production of the i th factory
is characterized by the number p;, giving the fraction of good bricks. The values of p; are
the following:

P =095 pp=090, p3=098, ps=092, ps=096

Since the lots are very large, we assume it is certain that the defectiveness of a lot produced
by the i th factory is exactly 1 — p;(i = 1,...,5). The probability of choosing a good brick
from a given lot is thus p;. We select 20 bricks at random from each lot. Since each
lot contains many bricks, and the drawing of 20 bricks does not change practically the
probability of selecting a good brick, we may assume that this probability is constant
while drawing bricks and hence equals p;. After checking the quality of all 100 selected
bricks, it turned out that 11 of them were defective. This result created some doubts as to
whether the assumptions about the numbers p; were not too optimistic. The mathematical
model of this example is the following. We have 100 independent random variables X,
and each of them can take on two values; 1 when a good brick is selected and 0 when a
defective one is selected. These random variables are divided into five groups. The i th
group consists of those random variables which take on the value 1 with probability p;.

Let us form the random variable

3/100:X1+...+X20+X21+...+X40+X41+...+X60

—|—X61—|—...—|—X80—|—X81+...+X100
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This is a random variable with a generalized binomial distribution. We have

E (Yi00) =20-0.95 4 20 - 0.90 + 20 - 0.98 + 20 - 0.92 + 20 - 0.96 = 94.20
D? (Yig0) =20 - 0.05 - 0.95 + 20 - 0.10 - 0.90 + 20 - 0.02 - 0.98
+20-0.08-0.92420-0.04-0.96 = 5.382

o =232

Before we apply the central limit theorem, we must examine the result obtained above
which gives the divergence of the series Ypyq; as a necessary and sufficient condition for
the convergence of the generalized binomial distribution to the normal distribution. If,
however, this series is convergent, then pyqr — 0 as k — oo. Hence min (py; 1 — pi) — 0.
Thus the sequence {py} must contain a subsequence convergent either to zero or to one.
In the language of this example, this would mean that the series Yp.q, would converge if
the bricks produced contained very often (theoretically an infinite number of times) either
only good or only defective items. However, many years of practice in the production of
bricks show that this is not true and thus the series Ypyqy is not convergent. Thus we can
apply the central limit theorem. According to this theorem, the random variable Yoo has

approximately the normal distribution N (94.2;2.32). Thus we have

Yioo — 94.2

P (Yoo < 89) =P
(Yioo < 89) ( 2.32

< —2.25) = P(—2.25)
From tables of the normal distribution we find that ®(—2.25) is rather small, about 0.01
In such cases we are inclined to accept the conclusion that our assumptions about
the p; were too optimistic. In this example we have touched on questions which will be
systematically and exhaustively considered. This example was given to show that the
central limit theorem is not only a beautiful mathematical achievement but can also
be applied to the solution of many practical problems. We see how important a role
the normal distribution plays in probability theory and its applications. However, the
theorem which we now present shows that under rather general assumptions a sequence
of distribution function of sums of independent random variables may converge to a limit
distribution function different from the normal. Consider a sequence {Y,} (n =1,2,...)

of random variables, where for every n,Y,, is the sum of n independent random variables
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Y, = Z X (4.82)
k=1

These sums are more general than the sums considered in this section, where we have
Xnk:Xk (n:1,2,,k:1,2,,n)

We restrict ourselves to the case when, for every n, the random variables X, (k =

1,2,...,n) have the same distribution * given by the probability function
P(Xnk :ZL’l) = Pnil (l = 1,2,...,7“) (483)

where

0 < Ppn < 1:anl =1
=1

and r(r > 2) is some natural number.

Theorem 4.7.3 Let Y,, be defined by formula (4.82) and let X,x(k = 1,2,...,n) be
independent and have the distribution defined by formula (4.83). Let F,(z) be the

distribution function of the random cariable Z,, defined as

Y,— F
, _Ya— B
D2 (Y,)
Then: L. If
nh—golo n (pnlpn2 + Pn1Pn3 + ...+ pn,rflpnr) = 00 (484)

! The case when the X, do not have the same distribution for all k was considered by

Kubik. the sequence {F,(z)} satisfies the relation

lim F,(z /24

-/
= e
n—00 21 —o
II. If the limits (finite or infinite)

lim p,;, and limnp, (=1,2,...,r)

n—oo n—oo
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exist, and the relation

nhﬁngo n (pnlan + Pn1Pn3 + ...+ pn,r—lpnr) = A (485)

where A > 0, holds, then the sequence {F,,(z)} converges to the distribution function of a
random variable which is a linear combination of s(1 < s < r — 1) independent random
variables, each having a Poisson distribution. We notice that in theorem we have dealt
with sums of the form (4.82). Indeed, let Y, be the number of successes in n trials in
the Bernoulli scheme and let the probability of success p,, be a function of n satisfying the
relation

lim np, = A (4.86)

n—oo

where \ > 0. Then we can write

k=1

where X, is the number of successes (equal to O or 1) in the k th trial (k =1,2,...,n);

thus the X,,;, are independent and have the same distribution given by the formulas

and we have r = 2. From formula (4.86) follow the relations

lim p,; =0, lim p,=1
n—0o0 n—o0

lim np,; = A, lim np, =00, lim np,1pp = A
n—oo n—oo n—oo

where A > 0. All the assumptions of assertion II of theorem are satisfied; thus the sequence
{F,(2)}, where F,(z) is the distribution function of the random variable

Yn — NPn
npp (1 - pn)

Ly =

converges as n — oo to the distribution function of a Poisson random variable with the
parameter \. This is the integral Poisson theorem, whereas theorem is the local Poisson

theorem.
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4.8 Let Us Sum Up

Learners, in this section we have seen that definition of Lindeberg-Feller theorem and

also given examples.

Check Your Progress

. In the Lindeberg-Feller theorem, the Lindeberg condition involves:

. The boundedness of the moment-generating function.

. The convergence of the sample variance to zero.

. The contribution of large deviations to the variance of the sum.

. The identically distributed nature of the random variables.

. The sample variance S? in the Lindeberg-Feller theorem is given by:
Y (X~ EX))

% > 07

. % Z?ﬂ (Xi - Ni)Q

C o 2oi Var(X;)

OO0 wW>»NMNO O W > =

4.9 Unit Summary

The fourth unit content on limit theorems are stochastic convergence, Bernoulli’s
law of large numbers, the convergence of a sequence of distribution functions, The
Levy-Cramer theorem, De Moivre-Laplace theorem, Lindeberg-Levy theorem and Lapunov

theorem.

Glossary

1. The X,, & X is converges in probability p.
2. The X,, & X is diverges in probability X.
3. If X,, % X is converges almost surely X.

4. F,(z) — F(z) uniformly for all = € R.
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5. F,(z) — F(x) at every point z € R.

6. F,(r) — F(z) at all continuity points of F.

Self-Assessment Questions

Short Answers: (5 Marks)

1. Prove that the sequence {F),(z)} converges to the distribution function F'(z) if
and only if the relation
lim F,(z) = F(z)

n—oo

holds for all points x in a set S which is everywhere dense in the interval ( —oo,
+00).

2. Show that if the sequence of characteristic functions {¢,(¢)} converges to the

characteristic function ¢(t) and ¢,, — to, then ¢, (¢,) — ¢ (to).

3. Prove thatif X;, X5, ... are independent random variables with the same distribution,
whose standard deviation o # 0 exists, then the sequence { F,,(z)} of distribution
functions of the random variables Z,,, given by formulas and satisfies, for every
z, the equality

lim F,(z —#/2q

-
= —F e
n—o00 2 oo

Long Answers: (8 Marks)

1. LetY,, = Zﬁ’;l Xnr , where the random variables X, (kK =1,...,k,) are independent
for each n and have the probability functions given by the formula P (X,x = z,u) =
Poki, Where S0 po = 1(n = 1,2,.., k= 1,2,... kol = 1,200 = 2).
Assume that (a) the X, are asymptotically constant, that is, for every ¢ > 0 we
have
limy, 0o maxy<g<k, P (| Xnk — mur| > €) = 0, where m,,;, is the median of X,

(b) lim,, 00 maxy <<, Znki = My 0o MiNj<p<p, 2o = (L =1,...,7),
where 2,1 = Tpri41 — Tni. Find the class of all possible limit distribution
functions of sequences { F,,(y)} of distribution functions of Y,, — A,, for arbitrary

sequences of constants {A,}.
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2. Let us denote by m; (™ the moment of order k of the random variable X,, with
the distribution function F,,(z). Prove that if, for £k = 1,2, .., the finite limits

my = li (n)
= lim m,
n—oo

exist and, moreover, these limits uniquely determine a distribution function F'(z)

the sequence {F,(z)} converges to F(z).

3. Let the random variables X, X5, X3, ... satisfy all the assumptions of the Lindeberg-Levy

theorem, and suppose that the moment £ | X;|” exists. Then the relation

E|X;® 1
Fu(z) = B()| < o oy
holds, where c is a constant.

4. The random variables X;(i = 1,2, ...) are independent and have the same probability

distribution, given by the formulas

P(Xi:O):P(XZ-:?)):P(Xi:?):P(Xi:12):i.

Check whether for this sequence the local limit theorem of Gnedenko holds.

5. The random variable X has the Poisson distribution with the parameter A. Let
u, = P(X =7r)(r=0,1,...),t = (r—\)/v/\and

1 ( t2)

Uy ex
V2T P 2
Wy =V (1—L+ r )
T 2V 6V

Applying Stirling’s formula, show that if A — oo and » — oo in such a way that ¢

remains bounded in absolute value, then for any ¢ > 0

lim [A'"° (u, —v,)] =0,

A—00

lim [A¥27F (u, —w,)] =0.

A—00
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Exercises

1. The random variable X has the Poisson distribution with the parameter \. Let
u, = P(X =7r)(r=0,1,...),t=(r—\)/v/\and

; 1 . ( t2>

r — X -

V2T P 2
v <1 t + r )
Wy = Uy - = — =
2V 6V

Applying Stirling’s formula, show that if A\ — oo and » — oo in such a way that ¢

remains bounded in absolute value, then for any ¢ > 0

lim [A'7° (u, —v,)] =0,

A—00

lim [)\3/2_5 (ur — w,)] =0.

A—00

2. The distribution functions F'(xz) and G(x) are said to be of the same type if there

exist constants a¢ > 0 and b such that for every z
G(z) = F(ax + ).

Prove that if the sequence of distribution functions { F,,(x)} converges as n — oo
to a nondegenerate distribution function F'(z), and if F,, (a,x + b,,) converges to
a nondegenerate distribution function G(x), then G(x) is of the same type as

3. Prove that {X;}(k = 1,2,3,...) be a sequence of independent and identically
distributed random variables. If, for some constants ¢ and A,(n = 1,2,3,...),

the relation

1 — 1 z 22
Jim, <a\/ﬁzk:1 ¢ 2) \/ﬁ/_mem( 2) :

holds for any z, then the variance o? of X, exists. If this is so, then a« = o and A,

may be chosen to equal \/TEE (X )
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Answers to Check Your Progress

Session (Modulo) 4.1

1. A. Convergence in probability implies convergence in distribution.

2.B.X, 5 X

Session (Modulo) 4.2

1. C. F,(z) — F(z) at all continuity points of F.

2. C. In distribution to F’

Session (Modulo) 4.3

1. A. f must be continuous on [a, b] and g must be of bounded variation on [a, b)].
2. A [} f(z)dg(z) = f(b)g(b) — f(a)g(a) — [ g(x)df ()

Session (Modulo) 4.4

1. B. Independent and identically distributed random variables with finite mean and
variance.

2. C. The moment-generating function of X; is finite for some interval |¢| < ¢,.
Session (Modulo) 4.5

1. B. The random variables must be independent.

2. B. The standardized sum of the random variables.

Session (Modulo) 4.6

1. B. The sum of random variables converges to a normal distribution.

2. C. " where K is a constant.

Session (Modulo) 4.7

1. C. The contribution of large deviations to the variance of the sum.

2.B. 13" o?
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Unit 5

Markov Chain

Objective

This course aims to teach the students about Markov chain with homogeneous Markov
chains and transition matrix, Ergodic theorem and random variables forming a homogeneous

Markov chain.

5.1 Introduction of Markov Chain

In this section we have mainly considered independent random events and independent
random variables. In fact, in the applications of probability theory we can often assume
that the random events or random variables under consideration are independent.
However, there are many problems in physics, engineering, and other areas of applications
of probability theory where the assumption of independence is not satisfied, not even
approximately. Therefore, the investigation of dependent random events and dependent
random variables is an important problem in probability theory. But to abandon the
assumption of independence creates serious complications in the reasoning and in the
proofs. It is a great achievement of Markov that in the investigation of dependent
events he distinguished a scheme of experiments, now called the scheme of events
forming a Markov chain, which can be considered as the simplest generalization of
the scheme of independent trials. Markov’s investigations have become the starting
point for the development of a new and important branch of probability theory, the

theory of Markov stochastic processes.
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Let Us Sum Up

Learners, in this section we have seen that introduction of Markov chains with example.

Check Your Progress

1. In a Markov chain, the transition matrix P represents:

A. The probability of transitioning between different states in one step.

B. The probability distribution of the initial state.

C. The probability of transitioning from the current state to the next state over multiple
steps.

D. The probability distribution of the stationary state.

2. A Markov chain is said to be irreducible if:

A. It is possible to return to the starting state in a finite number of steps.

B. There is a positive probability of reaching any state from any other state.

C. The chain has a stationary distribution.

D. The chain is periodic.

5.2 Homogeneous Markov Chains

We assume that all the conditional probabilities appearing in this and the following
chapters are defined. Imagine that we are given a sequence of experiments and as
a result of each experiment there can be one and only one event from a finite or
countable set of pairwise exclusive events F,, Fy, E3,... We call these events states.
When the event E; occurs we say that the system passes into the state E;. We
use the symbol E](.") to denote that at the nth trial the system passes into the state
E;; the symbol E](.O) denotes that the initial state was E,. Next we denote by pﬁ}”
the conditional probability that at the nth trial the system passes into the state £},
provided that after the (n — 1)-st trial it was in the state E;, that is,

n n n—1
) :P<E§ ' E} )>

Definition 5.2.1 We say that a sequence of trials forms a Markov chain if for any i, j,n =

1,2,3,... the equalities
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= p (B | E0) 61

are satisfied for arbitrary Ef:j) EY EY,

g oo ey ’il’ i0

Definition 5.2.2 We say that a sequence of trials forms a homogeneous Markov chain, if

fori,j =1,2,3,... the probability pl(?) is independent of n, that is,

pz(?) = Py (n =12,.. ) (5.2)

The probability p;; is called the transition probability from the state E; to the state
E in one trial. We also use the time terminology, that is, we consider the trials as
performed at every unit of.time and, instead of saying that at the nth trial the system
passes from the state E; to the state E;, we say that this transition is performed at the
moment ¢ = n. Besides this, we shall assume that at the initial moment, that is, at
t = 0, the system may be in the state £; with probability P (FE;). In this terminology
pi; is the transition probability from the state E; to the state E; in a unit of time. By
formulas (5.1), (5.2), and (1.7) we obtain the following formula for the probability of
the product of states ( E; E;, ... F;,) in n successive trials of a homogeneous Markov
chain:

P(E,E;, ...E;,)=P(E,)P(E, | Ey)...P (E, Einfl) (5.3)

= P (Ei,) Digiy - - - Pin_1in-

The reader will notice an essential difference between the last formula and formula
(1.7). It follows from formula (5.3) that the probability of every product of states is
given if we know all the transition probabilities p;; and all the probabilities P (E,,) of

the initial states.

Let Us Sum Up

Learners, in this section we have seen that the definition of homogeneous Markov
chains.

137



Check Your Progress

1. What characterizes a Markov chain as homogeneous?

A. The transition probabilities are constant over time.

B. The transition probabilities vary with time but are stationary.

C. The chain has a finite number of states.

D. The chain exhibits periodic behavior.

2. For a homogeneous Markov chain with transition matrix P, what does the matrix
P" denote?

A. The matrix of state probabilities after n steps.

B. The matrix of initial state distributions after n steps.

C. The matrix of transition probabilities after n steps.

D. The matrix of cumulative transition probabilities up to n steps.

5.3 Transition Matrix

The matrix with the transition probabilities p;; as elements is called the transition

matrix. This matrix is denoted by M;,

P11 P12 Pi13. .-
P21 P22 P23 ...

P31 P32 P33-.-..

We observe that all the elements p,;, being probabilities, are non-negative. Suppose
that the system is in the state E;. The event that as a result of the experiment the
system either remains in the state £; or passes to any of the states E;, where i # j, is

the sure event. Since the events £; are pairwise exclusive, fori = 1,2, 3,..., we obtain

() e

Thus the sum of the terms in each row of the matrix M; equals one. However, the sum

the formula

P

= sz'j =1 (5.4)
J

of the terms in a column need not be one.

Example 5.3.1 Consider a sequence of trials in the Bernoulli scheme. Here we have two
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states F, and F,, and in each experiment

P11 = P21 =P, P12 =P =(

Thus the transition matrix is of the form

It is easy to verify that in an independent sequence of trials the rows of the transition

matrix are always identical.

Example 5.3.2 Here we consider the random walk with absorbing barriers. It is a model
of certain phenomena which often appear in physics. A particle may be at one of the
points 1,2,3, ..., s on the x-axis. It will remain forever, with probability one, at the point
x = 1 if it arrives there at some moment t. The same is true for the point x = s. The
points 1 and s are called absorbing barriers. If at the moment t the particle comes to the
point x = i, where 2 < i < s — 1, then during the next unit of time the particle will pass
to the point i + 1 with probability p and to the point i — 1 with probability ¢ = 1 — p.
Here we have a homogeneous Markov chain with s states, where the state E; occurs if the
particle has the coordinate x = i. In fact, the probability of passing from the state F; to
the state E; at the moment t does not depend on the previous path of the particle and
does not depend on t but only on the state at the moment t. The transition probabilities

are

P11 = Pss = 1,
andfor2 <i<s—1 )
D forj =141
Pij=§yq=1—p forj=i—1

0 otherwise

\
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Thus the transition matrix has the form

1 0 00 0 00

g 0 p O 0 00

0 ¢g 0 p 0 00
M, =

0 0 00 qg 0 p

0O 0 00 0 0

We now give an example due to Malecot of the application of Markov chains to genetics.

Example 5.3.3 In the genetics based on Mendel’s laws we assume that inherited characteristics
depend on the genes. Genes always appear in pairs. In the simplest case, which we
consider here, every gene may be of one of two forms, A or a. If both genes of the
organism being considered are of type A, we say that the organism is of genotype AA;
if both genes are of type a we say that it is of genotype aa; finally, if one gene is of type
A and the other of type a we say that the organism is of genotype Aa. Furthermore,
we assume that the reproductive cells, or gametes, have only one gene; thus the gametes
of an organism of genotype AA or aa have the gene A or a, respectively, whereas the
gametes of an organism of genotype Aa may have the gene A or a with equal probability.
An offspring receives one gene from each parent under the conditions of the Bernoulli
scheme. This should be understood as follows: consider the set of all genes of all organisms
belonging to the generation of parents of a given offspring as the population from which
two genes are drawn at randomunder the conditions of the Bernoulli scheme. Similarly,
the genotype structure of N offspring is a result of 2N such drawings from the set of genes
under consideration. Suppose, now, that the population under consideration consists of
N elements in each generation. This may be achieved by an appropriate selection of
organisms in each generation. Thus we have 2N genes in each generation. If in some
generation i(0 < ¢ < 2N) of the genes are of the form A, we say that the generation is
in the state E;. From the assumed reproduction scheme it follows that we have here a
homogeneous Markov chain with 2N + 1 possible states: Fq, E1, ... Eon. The probability

of passing from the state E; in some generation to the state E; in the next generation is

= () ) (29)
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We observe that the states E, and E,y are the absorbing barriers. Indeed, if in some
generation the population is in one of these states it will remain there forever; if, for

instance, all the organisms are of the genotype AA, no offspring can have the gene a.

Example 5.3.4 Here we consider a model of a random walk without absorbing barriers,
having a countable number of states. The set of states is the set of all non-negative integers

and the transition probabilities are given by the formulas

p pu=q=1-—p,
Pij =9§ q fori=1,23,..; j=i+1,

0 for the remaining pairs (i, 7).

The number 0 is a reflecting barrier. The transition matrix M, is of the form

Example 5.3.5 Let us now return to the Polya scheme. We use the notation. We have
two states, state F); consists of drawing a white ball as state E5 consists of drawing a black
ball, and the initial probabilities are p; b/N and p, = 1 — p; = ¢/N, respectively. The
probability of passing from t state E; in the first drawing to the state E; in the second
drawing is (b+. (N + s). However, the probability of choosing a white ball in the third
drawi if in the second drawing a white ball was drawn, equals (b + 2s)/(N + 2 provided
that in the first drawing we obtained the state F, and it equals (b+(N + 2s)) provided in
the first drawing we obtained the state E,. Thus t sequence of trials in the Polya scheme
is not a Markov chain. We can, however, obtain a Markov chain in the Pdlya scheme if
we define t states in another way, namely, if we agree to say that after n drawings the
syste is in the state F;(i = 0,1,2,...,n), if i is the number of white balls obtained n
drawings. Then at the (n + 1) st trial the system may remain in the state F; pass to the
state E; 1, according to whether in the (n + 1) st trial a black or white ball was drawn.
These transition probabilities depend only on the state the system after the nth trial and
are independent of the results of the first n trials. However, these probabilities depend on

the number of trials and we ha here a nonhomogeneous Markov chain with the transition
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probabilities pgh) given by the formula
et forj=i
n+1 ; . .
pyt = ks for g

0 forj#ii+1

We denote by p;;(n) the probability of passing in n trials from t state E; to the state E; in
a homogeneous Markov chain. Sometimes call it the probability of transition in n steps.
We show how to compu the probabilities p;;(n) from the probabilities p;;. Let us start by
compt ing p;;(2). We observe that the event A of passing from the state E; the state E; in
two trials is the union of the pairwise exclusive events where Ay, occurs if and only if the
system passes from the state E; to Ej, the first step and from Ej, to E; in the second step.
Thus for every pi (i, j) we have

pij(2) = Zpikpkj (5.5)

k

where the summation is extended over all possible states.

Let Us Sum Up

Learners, in this section we have seen that definition of transition matrix also given

theorems and Illustrations.

Check Your Progress

1.Which of the following is true for a transition matrix P?
A. Each entry p;; can be negative.

B. Each row of P must sum to 1.

C. Each column of P must sum to 1.

D. The matrix P is not required to be square.

2. The Chapman-Kolmogorov equation is used to:

A. Calculate the stationary distribution of the Markov chain.

B. Relate the n-step and m-step transition probabilities.
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C. Find the eigenvalues of the transition matrix.

D. Compute the long-term behavior of the Markov chain.

5.4 The Ergodic Theorem

In an analogous way we find the formulas

pij(n) = Zpik<m)pkj (n—m) (5.6)

k

where n = 2,3,4,... and m is an integer satisfying the condition 1 < m < n. Equation
(5.6) plays a basic role in the theory of homogeneous Markov chains and is called the
Markov equation. The matrix whose elements are the transition probabilities p;;(n) is
called the matrix of transition in n steps and is denoted by the symbol M,,. It is easy
to find the relation between the matrices M,, and M;. Let us first find the relation
between the matrices M; and M,. From formula it follows that the element of matrix
M, at the intersection of the i th row and j th column is the sum of products of the
elements of the i th row by the j th column of M;. Thus, according to the rule of

multiplication of matrices, we obtain
M, = M?
By induction and formula (5.6), we have
M, = M;" 5.7)

We start this section with a classification of states of Markov chains; this will allow us
to interpret the assumptions of the ergodic theorem. This classification was introduced

by Kolmogorov.

Definition 5.4.1 The state E; is called unintrinsic if there exists a state E; and an integer
k such that p;j(k) > 0 and pj;(m) =0 form =1,2,3, ...

Definition 5.4.2 The state E; is called intrinsic if, for every state £, the existence of

an integer k; such that p;; (k;) > 0 implies the existence of an integer m; such that

Dia (mz) > 0.
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Definition 5.4.3 The intrinsic state E; is called periodic if there exists an integer d > 1
such that p;x(n) = 0 for n not a multiple of d. We observe, however, that we cannot pass
from the state E; to E,, nor can we pass from E_to F,, despite the fact that both states

are intrinsic. This remark gives rise to the following definition.

Definition 5.4.4 The set W of intrinsic states forms one class if for every pair of intrinsic
states E; and E; of W there exists an integer m;; such that p;; (m;;) > 0. We now discuss
the ergodic theorem. This theorem tells how the probabilities p;;(n) behave as n — oc.
In other words, it explains what influence the initial state F; has on the probability
pij(n) after a large number of steps n. We know that a condition for the convergence
pij(n) — p; for a homogeneous Markov chain, where the limits p; are independent of i,
that is, are independent of the initial state F;. The theorem given here does not give a
complete solution to this problem; in particular, it does not consider Markov chains with

a countable number of states.

Theorem 5.4.5 Let M, = [p;;] be the matrix of one step transition probabilities in a
homogeneous Markov chain with a finite number of states F1, ..., E,. If there exists an

integer r such that the terms p;;(r) of the matrix M, satisfy the relation

min p;;(r) =96 >0 (5.8)

1<i<s

in sy (s; > 1) columns, then the equalities
lim py;(n) =p; (G=12,....5) (5.9

are satisfied, and p; > 0 for those j for which relation (5.8) holds. Moreover, 3. p; = 1
and
[pij(n) = p| < (1= s10)""7". (5.10)

As we see, one of the assumptions of this theorem requires that the elements p;;(r) of at
least one column of the matrix M, be positive. The above theorem is a modification of the
theorem of Markov, which requires that for some integer r all the elements of the matrix
M, be positive. Then in the assertion of the theorem we have p; > 0(j = 1, 2,...,s).
Theorem is called the ergodic theorem and the limit probabilities p; are called the ergodic

probabilities. The explanation of this name is given at the end of this section.

Example 5.4.6 Let us return to example and suppose, for simplicity, that s = 3. Then
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we have. Let us compute

—
e}
e}

0 0 1
1 00 100 1 00
My=Mi’=|q 0 p q 0p|=1]q0p|=M
0 0 1 0 0 1 0 0 1
In general, we have
M, =M,

Thus the assumptions of the ergodic theorem are not satisfied. There does not exist an
r such that the matrix M, has at least one column of positive elements p;;(r). It is
obvious that the assertion of above theorem is not satisfied either, since p;1(n) = 1 so that
lim,, 00 p11(n) = 1, while lim,,_,, p21(n) = ¢ and lim,,_,o p31(n) = 0. The irregularity of
this Markov chain is caused by the existence of two intrinsic states £y and E3 such that

passage from one to the other is impossible; thus the set of states does not form one class.

Example 5.4.7 Consider a homogeneous Markov chain with four states F, Fs, E3, FE,

and the transition matrix We obtain here

0011l
Ml:oo%%
200
|5 3 0 0
1100
1 1
1199
M2:22
00 3 3
_00%%_

Generally, for k =1,2,3,..., we have

Mojr1 = My, My, = M,
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Thus neither the assumption nor the assertion of theorem is satisfied. The reader will
notice the periodicity of this Markov chain. All the states are intrinsic; but they are
periodic, so that, for instance, the system may return from the state F; to the state F,
only in an even number of steps. This periodicity causes the observed irregularity, as a

result of which the ergodic theorem is not satisfied.

Example 5.4.8 Let us return to example and suppose that the number of states is 3 and

the matrix M, has the form
q p 0
Mi=14q 0 p

0 g p
Then
2 2
*+pg qp p
M, = ¢ 2 PP
¢ pq qp + p?

Thus the assumptions of theorem are satisfied. We observe that all three states are
intrinsic, nonperiodic, and form one class. We show later how to compute the ergodic

probabilities.

Example 5.4.9 Let us modify example, such a way that the transition matrix takes the

form

100
Mi=14q 0 p
0 g p

In this example, the state E, is an absorbing barrier, and the state Ej is a reflecting barrier.
We have Thus the assumptions of theorem are satisfied. It is easy to verify that the state
E, is intrinsic and not periodic and the remaining two states are unintrinsic. Later we
show that the limit probabilities p, and ps are zero. These examples suggest, and it can
be shown that this is true, that if in a homogeneous Markov chain with a finite number
of states all the intrinsic states are nonperiodic and form one class, then the assumptions
of theorem are satisfied. However, the possibility that some states are unintrinsic is not
excluded. But if all the states are intrinsic, nonperiodic, and form one class, then there
exists an r such that all the elements p;;(r) of the matrix M, are positive, hence greater

than some 6 > 0, since there are only a finite number of them. Let us mention here that
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Kaucky and Konécny have given necessary and sufficient conditions for the ergodicity of
homogeneous Markov chains; their conditions are expressed in terms of eigenvalues of the
matrix M,. We now give the proof of theorem.

Proof: For v =1,2,3, ..., denote

bj(v) = min p;;(v), Bj(v) = max p;;(v) (5.11)

1<i<s 1<i<s

Considering formula (5.6) for v =1,2,3,..., we obtain

bj(v+1) = min p;;(v+1) = min szkpkj

1<i<s 1<i<s

Hence

Similarly,

From formulas (5.12) and (5.13) we obtain
bj(1) <b;(2) <...< Bj(2) < Bj(1) (5.19)

Let v and 5_; and Y, denote, respectively, the sums extended over those k for which
Pit(1) = pmk(r) and pix(r) < pmr(r). Then

D pin(r) = ok ()] Y [pin(r) — por(r)] = 0 (5.15)

k

Suppose that n > r. Consider the difference

= max > [pi(r) = pmr(r)] prj(n — 1)
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< maxicimes {2op [Pin(r) = Pk (r)] Bj(n — 1) + 32 [pir(r) — pmr(r)] bj(n — 7)}. Hence
by formula (5.15) and (5.16)

_l’_
Bi(n) = bi(n) < max 3" [pilr) = pos(r)] [Byn — 1) = by(n = 1)
Tk
+
= [B(n = 1) = by(n — )] max 3 [p(r) = par)]
Suppose that relation (5.8) holds for w terms of the sum 3", . Obviously, w < s, where

sy is the number of columns for which (5.8) is satisfied. Thus

— mek<7') < —

Next, since for sy — w terms of the sum ), — relation (5.8) is also satisfied, we have

Zpik(r) +(s1—w)d<1

Finally,

i ik (r) = prk(r)] <1 — (51 —w)d —wd =1 — 516 (5.16)
k
From formulas (5.15) and (5.16) follows the inequality
By(n) — b;(n) < (1 — :8) [By(n —r) — by(n — 1))
Similarly, for n > 2r
Bj(n) = bj(n) < (1= 516)" [Bj(n — 2r) — bj(n — 2r)]

Repeating this procedure [n/r]* times, we obtain

Bj(n) — b;(n) < (1 — s;0)"" {Bj (n — [ﬁ} T> —b; (n - [—] r)} (5.17)

r
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We observe that from (5.17) and from the fact that 6 > 0, s; > 1 follows the inequality
01— 81(5 <1

Thus from formula (5.14) follows the existence of the limits of {b;(n)} and {B;(n)}, and

limits are equal. Therefore,

15 e pule) = o poln puln) =, 618)

which proves formula (5.9). Next, it is obvious that for those j for which relation (5.8)
is satisfied, we have p; > . The equality 3, p; =1

is also obvious. It remains to prove relation (5.10). In fact, by formulas (5.14) and
(5.15) we obtain

|pij(n) — p;| < Bj(n) — bj(n) < (1 —5,8)"""

which completes the proof of theorem. We now show how to calculate the ergodic probabilities

p; if they are known to exist. By formula (5.6) we obtain

pij(n) = szk(n — 1)pg;
k=1

Thus, if the ergodic probabilities p; exist, then after passage to the limit as n — oo on

both sides of the last inequality we have
k=1

! The symbol [A] denotes here the greatest integer not exceeding A. From these equations

and from the relation
2 pi=1
j=1

we can determine the probabilities p,.

Example 5.4.10 Let us return to example and calculate the ergodic probabilities p;.
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Formula (5.19) gives us three linear equations

P1 = P19 + P2gq
P2 = P1p + P3q
D3 = P2p + P3P
Hence
D
P2 = —D1
q

Since p, + ps» + p3 = 1, we obtain

b1

2
1+E+<]—j) —1
¢ \q

Thus if p = q = 3, then p; = p, = p3 = %, and thus in the limit each state has the same
probability. If p # q, then

_ 1=/ <§>H (j=1,23)

AR PYPE

If p > q, then the probabilities p; increase with the number j of the state; if p < q they

decrease. These results agree with our intuition. Thus if p/q = 2 we have and if p/q = %

1 2 _4
p1_77 p2_77 p3_77

_4 _2 _1
p1—7, p2—7, p3—7

We observe that all three ergodic probabilities are positive. This is because all states are
intrinsic. In a Markov chain with a countable number of states ergodic probabilities of

intrinsic states may be equal zero.
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Example 5.4.11 Let us calculate the limit probabilities. By formula (5.19) we have

P1 = Pp1+ P2gq
P2 = P3q

ps = (p2 +p3)p

Since p1 + po + p3 = 1, we obtain p; = 1,ps = p3 = 0. As has been mentioned, this
is because the states E» and E5 are unintrinsic. The notion of ergodicity and conditions
for the validity of the ergodic theorem for nonhomogeneous Markov chains can be found
Kolmogorov, Sarymsakov, and Hajnal. We now find the relations between the ergodic
probabilities and the absolute probabilities in a homogeneous Markov chain. Let us
compute the absolute probability of the event that after n steps the system passes into
the state E;. Denote this probability by c;(n). We have

¢j(n) =Y P (Ex) pij(n) (5.20)

= ch(n — 1)py;j

where P (FE}) is the initial probability of the state F.
Definition 5.4.12 A homogeneous Markov chain for which the equalities
P(E;) =¢(1) (1=12,..)

are satisfied is called a stationary chain and the probabilities ¢;(n) are called stationary
absolute probabilities. We observe that from the last equalities and from formula
(5.20), for j =1,2,...and n = 1,2, 3, ..., it follows that

Thus from formula (5.20) we obtain the equalities
= apy (=12 (5.21)
k:

Suppose that the number of states is finite and equal to s. Suppose that the assumptions

of theorem are satisfied; thus the ergodic probabilities p; exist. By comparing formulas
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is easy to verify that ¢; = p;(j = 1,2,3,...,s). Thus; if the initial probabilities P (E;)
are equal, for j = 1,...,s, to the ergodic probabilities p;, then c;(n) = p; will be
constant for n = 1,2,3,...; hence the chain will be stationary. We shall have an
equilibrium in the sense of the invariance of absolute probabilities. This explains the
name "ergodic theorem." However, we observe that for an arbitrary Markov chain with

a finite number of states we have the following theorem.

Theorem 5.4.13 The limits of the absolute probabilities

lim ¢j(n)=¢; (j=1,2,...,5) (5.22)
n—oo
for a homogenous Markov chain with a finite number of states exist independently of

the initial distribution if and only if the ergodic probabilities p; exist. We then have
ci=pi(7=12...,5).

Let Us Sum Up

Learners, in this section we have seen that definition of Ergodic theorem and also

given theorems and Illustrations.

Check Your Progress

1. In the context of the ergodic theorem, what does it mean if a dynamical system is
ergodic?

A. Every invariant set under the system’s evolution has measure zero or one.

B. Every function is invariant under the system’s evolution.

C. The system exhibits chaotic behavior.

D. The system has a periodic orbit.

2. For a system satisfying the ergodic theorem, if X is a measure-preserving dynamical
system and f is an integrable function, what does the ergodic theorem state about the
function f?

A. The time average of f converges to its space average almost everywhere.

B. The time average of f converges to the mean of the function over time.

C. The space average of f is constant over time.

D. The function f must be periodic.
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5.5 Random Variables Forming a Homogeneous Markov

Chain

Suppose that (5.22) is satisfied and ¢; does not depend on the initial distribution. Then
we may put P (E;) =1 and P (E;) = 0(i # j). Hence by formula (5.20) we have

¢j(n) = pi(n)

Therefore, by (5.22)
pj=lim py(n) =¢; (1,7=1,2,....9)

Conversely, suppose that the ergodic probabilities p; exist. Then by formula (5.20) for

an arbitrary initial distribution we obtain

lim ¢;(n) = nlggoz P (Ey) pr;(n) = p; Z P (Ey) = p;
k=1 k=1

n—oo

The considerations of the previous sections may be applied to random variables. Let
{X,}(n=0,1,2,...) be random variables that can take on the values z;(i = 1,2, 3, .. .).
The values x; correspond to the states E; previously discussed. We now give definitions

analogous to the definitions.

Definition 5.5.1 We say that the sequence {X,}(n = 0,1,2,...) of random variables
with possible values x;(i = 1,2,3,...) forms a Markov chain if for i,j,n = 1,2,3, ... the

equalities.
P =P (X =, | Xpoy = ;) (5.23)
=P (Xn = xj | anl = xi7Xn72 =Ty oy - 7X1 = xiuXO = Q:io)
are satisfied for arbitrary x; _,,...,z;, z;,.

Definition 5.5.2 We say that the sequence {X,}(n = 0,1,2,...) of random variables

with possible values x;(i = 1,2,3,...), forms a homogeneous Markov chain if for i, j,n =
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(n)

1,2,3,. .. theconditional probabilities p;;” are independent of n, that is,

Py}

= Dij (5.24)
In the terminology of random variables the probability p;;(n) of transition from the state

E; to E; in n steps is the probability that X,, = x; provided X, = x;, which means
pij(n) = P (Xn = ;| Xo = ;)
Formula (5.6) takes the form

pij(n) = P(Xp =ap | Xo = 2,) P (X, = 2 | Xon = 7) (5.23)
k

where 1 < m < n. The absolute probabilities c;(n) expressed by formula (5.20) take the

form

¢j(n) = P(X, =x;) =Y P(Xo =) P (X, =2, | Xo =) (7.5.4)
k

Definition 5.5.3 A sequence {X,} (n = 0,1,2,3,...) of random variables with possible
values x;(i = 1,2,...) forming a homogeneous Markov chain is stationary if for j =
1,2,3,...

If follows from the last equality that forn =0,1,2,...and j =1,2,3, ...
P (Xn = [L‘j) =Cj

Thus a stationary sequence of random variables is a sequence of identically distributed
random variables. It is also easy to formulate the classification of states and the
theorems proved previously in the terminology of random variables. We leave this
to the reader. It should be stated that the theory of limit distributions for random
variables forming a homogeneous Markov chain is less advanced than the same theory
for independent random variables. Conditions for the validity of the central limit
theorem for Markov chains with three states were found by Markov, and for chains

with an arbitrary finite number of states by Romanovsky Fréchet, and Onicescu and
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Mihoc. Doeblin showed that for a certain class of Markov chains with a countable
number of states, the question of limit theorems can be reduced to the analogous
question for independent random variables. For chains with an arbitrary number of
states, some results were obtained by Doeblin, Doob, Dynkin, and Chung [2,3]. A
quite advanced, result, which is essentially a generalization of the Lindeberg-Lévy
theorem to a large class of random variables forming a homogeneous Markov chain,
was recently obtained by Nagayev. The local limit theorem for Markov chains with a
finite number of states was given by Kolmogorov. Sirazhdinov obtained some results
concerning the rate of convergence to the limit distribution in the local and integral
limit theorems for Markov chains with a finite number of states. In the paper quoted,
Nagayev obtained the local central limit theorem for Markov chains with a countable
number of states and estimated the rate of convergence to the normal distribution.
Some theorems concerning the laws of large numbers for random variables forming
a Markov chain can be found in the book by Doo and the paper of Chung. Breiman
recently obtained a general result in this field. We merely state here without proof the
law of large numbers and the central limit theorem for random variables forming a

homogeneous Markov chain with a finite number of states.

Theorem 5.5.4 Let { X} (k =0,1,2,...) be a stationary sequence of random variables
forming a homogeneous Markov chain with a finite number of states. If all the intrinsic

states are nonperiodic and form one class, then

1
P | lim

Y X=E(Xo)| =1 (5.25)
k=0

Thus if the assumptions of this theorem are satisfied, then the sequence { Xy} obeys the

strong law of large numbers. Compare this theorem with the theorem of Kolmogorov.

Example 5.5.5 Consider a stationary sequence of random variables X;.(k =0,1,2,...)
which can take on only two values x, and x5 and form a homogeneous Markov chain. The
number x, is the state F1 and the number x, is the state E,. Suppose that the transition
matrix is

P11 P12
M, =

P21 P22

where 0 < p1o < 1,0 < py; < 1. The assumptions of theorem are satisfied for r = 1. Both

states are intrinsic and nonperiodic and they form one class. By formula (5.19) and the
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relation p, + p, = 1 we obtain the ergodic probabilities

D21 D12
pp=— py=— (5.26)
D12 + Pa1 D12 + Po1

and 0 < p; < 1,0 < ps < 1. By the assumption that {X,} is stationary we have
P(Xy=mz)=piand P(Xy = x3) = po(k = 0,1,2,...). By theorem the relation

n

1
lim Y Xp= 2 2y, (5.27)

n=con + 1 — B P12 + P21 P12 + P21

holds with probability one. In particular, let xy = 1 and xo = 0. Then the event
(> i_o Xk = m) occurs if m times among the possible n + 1 times the system is in the
state Fy. Relation (7.5.7) states that, with probability one, the average number of times
that the system is in the state E; tends to ps1/ (p12 + po1). If we treat the appearance
of the value 1 = 1 as a success, we see that the number of successes in a sequence of
trials forming a homogeneous Markov chain obeys the strong law of large numbers. The
weak law of large numbers for this example was obtained by Markov. We now present the

central limit theorem. Let .
Yo=Y [Xi— E(Xy)]
k=0

Theorem 5.5.6 Let {X,} (k= 0,1,2,...) be a sequence of random variables forming a
homogeneous Markov chain with a finite number of states. If all the intrinsic states are
nonperiodic and form one class, and if the variance D? (Y,,), when the sequence { X} is

stationary, satisfies the relation

D2 (Y,
lim #1‘) =g2>0 (5.28)

n—oo N +

then for an arbitrary initial distribution of the random variable X, the relation

Y, 1 Y 2
lim P —2—<y) = — eV /2 (5.29)
n—00 <0’\/TL +1 y) V2T /_oo Y
is satisfied.

Example 5.5.7 Let us return to example, in which the sequence { X}} is stationary, and
set xt1 = 1,29 = 0. Let Z = Xy — E (Xy). Since {X}} is stationary, we have E (X}) =
p1(k=0,1,2,...). Let us find D*(Y,,) and verify that relation (7.5.8) is satisfied. Since
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the sequence { X} } is stationary, we obtain

n n—1 n
D*(Y,) =Y _D*(Z)+2> Y E(ZiZy) (5.30)
k=0 k=0 m=k+1
n—1 n
=(n+Dpip2+2> Y E(ZiZy)
k=0 m=k+1

To find E (ZyZ,,), we observe that the random variable 7, Z,, can take on the following
values with the respective probabilities:
PZZy=(1-p)°] =P (Xp =1) P (X = 1| Xpe = 1) = p1p11(m — k)
PlZyZnm = (1 =p1) (=p)] =P (Xp =1) P(X;, =0 [ X = 1)
+P(Xy=0))P(X,,=1| Xx=0)
=pip12(m — k) + papa1(m — k)

P (ZkZm = p12) =P (Xk = 0) P (Xm =0 ‘ Xk = O) = p2p22(m - /{Z)

Hence, after some simple computations,

E(ZxZy) =pip2°p11 (1 — k) — p1i*papra(m — k) (5.31)
- p1p§p21 (m—k)+ p%pgpgg(m — k)

=p1P2 [pn(m - k) - p21(m - k?)] = P1P2 (Pn - p21)m

Therefore, using formula (5.15) and letting 6 = p11 — po1, we obtain

D*(Y,) =pip2 {n+14+2[né+(n—1)8"+... 446"}

n n—1
n+1+2(25j+25j+...+5>
j=1 j=1

26n 202 (1—0")
1-0  (1-9)2 }

= pip2

= p1p2 [n—i—l—i—
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5.6 Let Us Sum Up

Learners, in this section we have seen that the defintions of random variables forming

a homogeneous Markov chain and also given theorems and applications.

Check Your Progress

1. Which of the following best defines a sequence of random variables { X, } as forming
a homogeneous Markov chain?

A. The probability distribution of X, ; depends only on X,, and noton X,, 1, X,, o, ..., Xo.
B. The probability distribution of X,,,; depends on X,, and X,,_;.

C. The sequence {X,} is independent and identically distributed.

D. The probability distribution of X, is uniform across all n.

2. In a homogeneous Markov chain, what does it mean if the transition probabilities
are time-invariant?

A. The transition probabilities vary with time but are stationary.

B. The probability distribution of the chain at each time step is the same.

C. The chain is always in the same state.

D. The transition probabilities from state i to state j do not change over time.

5.7 Unit Summary

The fifth unit content on homogeneous Markov chains, transition matrix, Ergodic

theorem, random variables forming a homogeneous Markov Chain.

Glossary

1. The p§;‘> is The probability p;; is called the transition probability from the state

E; to the state £ in one trial.

2. The M, is a matrix with the transition probabilities p;; as elements is called the

transition matrix. This matrix is denoted by M;.
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3. If pg”rl) is p;;(n) the probability of passing in n trials from t state £; to the state

E; in a homogeneous Markov chain.

4. The c;(n) the absolute probability of the event that after n steps the system passes
into the state E;.

Self-Assessment Questions

Short Answers: (5 Marks)

1. If the transition matrix of a homogeneous Markov chain with four states has the

form ) )
1 1 1
i2 0 3
19 1 1
5 3 15
M, =
2 1
0 5 35 0
i1 1 1
| 2 1 1 1 |

(a) Calculate all states.
(b) Check whether the ergodic theorem holds.
(c) If so, find the ergodic probabilities.

2. If the transition matrix of a homogeneous Markov chain with four states has the

form

0

Bl Wl
= wIiN
(@)

e}

o ]
(@] @]
Wl NI~ ol

Wiy N

(a) Classify all states.
(b) Check whether the ergodic theorem holds.
(c) If so, find the ergodic probabilities.

3. (a) Prove that for an arbitrary homogeneous Markov chain with a finite number

of states the limits exist.

1
lim —

i 25 =
k=1
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4. Let K;;(n) denote the probability of passing from the state E; to the state E; for
the first time on the nth step and let

Lij = 221 Kij(n), Ri= E”Kia’(”)

The expression R;; is called the mean recurrence time of the state £;. The state
Ej; is called recurrent if L;; = 1, transient if L;; < 1. A recurrent state with R;; =
oo is called a null state. A recurrent state which is neither a null state nor periodic
is called an ergodic state. Show that (a) K;j(n) = p;;(n) — K;;(1)p;j(n — 1) —
... — K;j(n —1)pjj.

5. Let K;;(n) denote the probability of passing from the state £; to the state E; for
the first time on the nth step and let

Lij = 21 Kij(n), Riy= Z;”Kij(”)

The expression R;; is called the mean recurrence time of the state £;. The state
E; is called recurrent if L;; = 1, transient if L;; < 1. A recurrent state with
R;; = oo is called a null state. A recurrent state which is neither a null state nor
periodic is called an ergodic state. Show that homogeneous Markov chain with

a finite number of states, the state ; is recurrent if and only if it is intrinsic.

Long Answers: (8 Marks)

1. Let us consider a homogeneous Markov chain with a countable number of states

with the transition matrix

p 1=p 0 0 0

D2 0 1 —po 0 0

o

D3 0 0 1—ps3

Show that if ™7, p; < oo, then all states are transient and if 3 > | p; = oo, then
all states are recurrent. Deduce that there may exist states which are at the same

time transient and intrinsic.
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2. Let us denote by ;; the probability that the system will return an infinite number
of times to the state E; if at the initial moment it was in the state £;. Prove that
(a) if L;; = 1, then €;; = 1. (b) for a set of intrinsic states which form one class
either all ;; < 1orall Q;; = 1.

3. Prove that in a set of intrinsic states which form one class, either all L;; < 1 or
all Lz‘j =1.

4. Let M, = [p;;] denote the transition matrix of a homogeneous Markov chain with
a countable number of states E, Es, Fs, . ..
I. If all states are recurrent, non-null and nonperiodic and form one class, then
fori,j=1,2,...,
lim p;j(n) =p; = 1/Rj;

n—o0

where p; +p2+... = 1,p; > 0, and p; = ¢;, where ¢, is the stationary probability.
IL. If E; is a transient or a recurrent null state, then for all : we have lim,,_, p;;(n) =

0. III. If E; is a recurrent, non-null state and has period d > 1, then prove that
Tim p;;(n) = d/Rj;

5. Let us consider a homogeneous Markov chain with a countable number of states

and with the transition matrix

120 0 0 0
20 2 0 0 0
Mi=| 3 0 0 1 0 0
4 1
0 0 0 f 0

Show that lim,, . pij(n) = p; = e 1/j(i,j,=1,2,...).

Exercises

1. Prove that

D%(Y,) ) n pipe 20%(1—67)
— 142 ) _ .
ntl plp?( TS n—i—l) ntl  (1-0)
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2. The transition matrix of a homogeneous Markov chain with four states has the

form ) )
1 1 1
i2 0 3
19 1 1
5 3 15
M, =
2 1
0 5 35 0
11 1 1
| 2 1 1 1 |

(a) Classify all states. (b) Check whether the ergodic theorem holds. (c) If so,
find the ergodic probabilities.

3. The transition matrix of a homogeneous Markov chain with four states has the

form

0

=}

Al Wi
= Wi

e}

o O
o O

Wl NI~ ol

Wi NI

(a) Classify all states. (b) Check whether the ergodic theorem holds. (c) If so,
find the ergodic probabilities.

Answers to check your progress

Session (Modulo) 5.1

1. A. The probability of transitioning between different states in one step.

2. B. There is a positive probability of reaching any state from any other state.
Session (Modulo) 5.2

1. A. The transition probabilities are constant over time.

2. C. The matrix of transition probabilities after n steps.

Session (Modulo) 5.3

1. B. Each row of P must sum to 1.

2. B. Relate the n-step and m-step transition probabilities.

Session (Modulo) 5.4

1. A. Every invariant set under the system’s evolution has measure zero or one.
2. A. The time average of f converges to its space average almost everywhere.
Session (Modulo) 5.5
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1. A. The probability distribution of X,,,; depends only on X,, and noton X,, 1, X,, »,..., Xq.

2. D. The transition probabilities from state i to state j do not change over time.
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